|
||||
|
Соленые спектры Когда электрон изменяет скорость или направление движения, он испускает электромагнитное излучение. В таком случае, считает Дедал, при прохождении электрического тока по извилистому проводнику должен излучаться свет. Частота излучаемого «света» в такой установке будет равна числу извилин проводника, проходимых электроном за секунду, и, следовательно, она лежит гораздо ниже границы видимого диапазона спектра. Даже если бы электроны двигались со скоростью света (как, к примеру, в длинной, извилистой формы радиолампе под действием ускоряющего напряжения), длина волны испускаемого излучения была бы равна длине одной извилины. Чтобы получить таким способом видимый свет, понадобилась бы лампа с извилинами, меньшими длины волны видимого света. Дедал предлагает воспользоваться кристаллами поваренной соли. В кристаллической решетке соли положительные ионы натрия и отрицательные ионы хлора чередуются с интервалом 0,28 нм, и электроны в пучке, направленном вдоль поверхности кристалла, будут отклоняться то в одну, то в другую сторону под действием полей, создаваемых чередующимися положительными и отрицательными зарядами. По расчетам Дедала, заполненная солью радиолампа должна излучать видимый свет уже при разности потенциалов между электродами в 0,05 В. КПД такой лампы невелик, так как электроны касаются поверхности кристалла только в отдельных участках своего пути. Поэтому Дедал ищет пористый материал с ионной структурой, внутри которого электроны вынуждены были бы двигаться по извилистой траектории. Для этой цели больше всего подходят цеолиты, широко применяемые в ионообменниках и молекулярных ситах. В лабиринте их ячеистой структуры электрон будет двигаться по траектории с извилинами длиной 2 нм. Дедал присоединяет электроды к кускам цеолита, запаивает их в стеклянные баллоны и откачивает воздух. В результате получается «лабиринтная радиолампа». В этой лампе электроны движутся зигзагообразно от катода к аноду, испуская электромагнитное излучение на всем пути. Видимый свет будет излучаться уже при напряжении 3 В, причем такая лампа способна перестраиваться по спектру в очень широком диапазоне. В зависимости от приложенного напряжения, определяющего скорость движения электронов внутри цеолита, лампа излучает свет с любой длиной волны: от инфракрасного до ультрафиолетового[42]. Способность цеолампы изменять свой цвет с той же частотой, с какой изменяется управляющее напряжение, обеспечивает ей множество полезных применений в технике и в быту. При питании обычным переменным напряжением от сети цвет лампы будет казаться постоянным, так как глаз не в состоянии различить его изменения с частотой 50 Гц. Однако этот цвет легко изменять, управляя величиной или формой питающего напряжения. Особенно эффектно это свойство может использоваться в театральных постановках и на эстраде. В частности, Дедал надеется, что цеолампы помогут «живым» концертам одержать верх в конкуренции с звукозаписью. Цеолампа, управляемая через усилитель сигналом от музыкального инструмента, будет действовать как цветовой стробоскоп. Например, цвет струны, освещенной цеолампой, будет изменяться в фазе с ее собственными колебаниями. Скрипки, барабаны и тарелки станут переливаться всеми цветами радуги. New Scientist, July 25, 1974 Звучащая тарелка переливается всеми цветами радуги: от фиолетового в верхнем положении до красного — в нижнем. В действительности же наличие высших гармоник приведет к еще более красочным зрелищным эффектам. Из записной книжки ДедалаЭлектрон, имеющий массу m и заряд е, ускоряясь за счет разности потенциалов Е, приобретает скорость v, которая определяется из уравнения Ee = 1/2v2. Пусть этот электрон проходит через кристаллическую решетку с периодом l. Чтобы электрон «вилял» с частотой v, он должен проходить v периодов решетки в секунду, т. е. двигаться со скоростью v=vl. Соответствующая разность потенциалов равна E = 1/2mv2/e = mv2t2/2e = kv2t2; при m = 9,11×10-31 кг и e = 1,60×10-19 Кл находим k = 2,8×10-12 кг/Кл. Таким образом, чтобы получить желтый свет с частотой v = 500 ТГц, направляя электроны вдоль поверхности кристалла соли с периодом решетки l = 0,28 нм, необходима разность потенциалов Е = 2,8×10-12 × (500×1012)2 × (0,28×10-9)2 = 0,054 В. Но это слишком мало, чтобы обеспечить достаточно интенсивную эмиссию электронов из обычных катодов. Цеолиты выглядят гораздо более привлекательно. Они прозрачны, и внутри цеолита электроны движутся в извилистом «объемном» лабиринте, а не вдоль поверхности. «Период решетки» l здесь составляет около 2 нм, соответственно и значения разности потенциалов получаются более приемлемые. Красному свету (400 ТГц) соответствует E=1,8 В, желтому (500 ТГц) — 2,8 В, голубому (600 ТГц) — 4 В, фиолетовому (750 ТГц) — 6,3 В. Подняв напряжение до нескольких киловольт, можно выйти в область дальнего ультрафиолета, однако в ИК-области напряжения будут слишком малы, чтобы обеспечить достаточную эмиссию электронов. Поэтому цеолампу скорее можно считать удобным перестраиваемым источником излучения видимого и ультрафиолетового диапазона. Комментарий Дедала Примечания:4 К сожалению, проблема кпд теплового насоса до сих пор вызывает горячие споры (см., например, книгу [2], с. 268–275), кроме того, пережать капилляры простым трением руки, как предлагает Дедал, вряд ли возможно [3]. Инстинктивно потирая мерзнущие участки тела, едва ли можно пережать капилляр. — Прим. ред. 42 Аналогичный принцип возбуждения электромагнитного излучения используется в генераторных лампах СВЧ диапазона: магнетронах и клистронах. — Прим. ред. |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх |
||||
|