|
||||
|
Радиоактивная левитация Уже сейчас становится ясно, что одна из главнейших проблем ядерной технологии — уничтожение радиоактивных отходов. Эти невероятно опасные вещества стоят особняком в ряду прочих отбросов современного производства: они не подвергаются вторичной переработке и нуждаются в надежной изоляции на столетия, пока их радиоактивность не снизится до приемлемого уровня. Не так давно — вполне в духе фирмы КОШМАР — было выдвинуто предложение направлять радиоактивные отходы в глубь Земли, используя нисходящие конвекционные потоки в мантии планеты. Теперь Дедал предлагает иной и едва ли более технологичный способ расправляться с радиоактивным «мусором» — выбрасывать его в космическое пространство. Для этой цели Дедал изобретает радиоактивную ракету. Многие тяжелые радиоактивные ядра при распаде испускают альфа-частицу, испытывая при этом значительную отдачу. Если бы все альфа-частицы испускались в одном направлении, можно было бы получить постоянную тягу. Вначале Дедал хотел поместить радиоактивное вещество в магнитное поле, чтобы все ядра ориентировались одинаково, но затем решил, что гораздо проще будет установить экран, позволяющий альфа-частицам вылетать только в одном направлении. По его расчетам, радиоактивное вещество с периодом полураспада меньше суток способно преодолеть земное притяжение! Вещества с более коротким периодом полураспада смогут поднять груз, превышающий их собственный вес. Поэтому специалисты по ядерным реакторам фирмы КОШМАР пытаются установить такой режим работы реактора, который обеспечивал бы получение короткоживущих изотопов в количестве, достаточном, чтобы они могли потянуть за собой все отходы. Масса каждой отдельной ракеты может исчисляться килограммами или даже граммами — расчет не накладывает никаких ограничений на абсолютную массу вещества; эти ракеты будут бесшумно взмывать вверх, унося от реактора свой страшный груз. Чтобы придать проекту законченность, Дедал предлагает направлять эти ракеты иа Солнце. Испускаемые ракетой альфа-частицы, поглощаясь в воздухе, создадут яркий шлейф, но не достигнут поверхности Земли. К сожалению, подобный проект едва ли пригоден для наземного транспорта. New Scientist, January 7, 1971 Из записной книжки Дедала Пусть мы имеем М кг радиоактивного изотопа с молярной массой А. Тогда в образце содержится N = MNA/A атомов, где NА — число Авогадро. Если период полураспада составляет τ1/2 с, то число распадов на один атом в 1 с равно ln 2/τ1/2, а для всей массы М число распадов в секунду составляет n = N×ln2/τ1/2 = ln2×MNA/Aτ1/2. При каждом распаде вылетает альфа-частица с массой m и энергией Е = mv2/2, импульс которой равен mv = (2Em)1/2. Путем простого экранирования образца мы можем направить примерно 1/6 импульса вниз, около 1/3 импульса рассеется радиально в стороны, а составляющая импулы а, направленная вверх, будет равна нулю (рис. 1). ![]() Результирующая тяга равна (точка сверху обозначает дифференцирование по времени): ![]() Под действием этой силы масса М получает ускорение: ![]() Учитывая, что NA = 6,02×1023 моль-1, а масса альфа-частицы m = 6,67×10-27 кг, получим ![]() где k = 8,0×109 кг1/2/моль. Альфа-частицы имеют обычно энергию порядка 1 МэВ (1,6×1013 Дж). Чтобы наш изотоп взлетел, его ускорение а должно быть больше g. Возьмем какой-нибудь «энергичный» изотоп, например 250Fm: тогда А = 0,250 кг/моль, τ1/2 = 1800 с, Е = 7,43 МэВ, получаем а = 19 м/с2; для 248Es (А = 0,248 кг/моль, τ1/2 = 1500 с, Е = 6,87 МэВ) получаем а = 23 м/с2. Похоже, что правильно подобранный изотоп не только поднимет собственный вес, но и унесет с собой такое же или даже большее количество других отходов. Если подать на экран положительный электрический потенциал в несколько MB, чтобы все положительно заряженные частицы (а не 1/6 их числа) отражались от экрана вниз, можно увеличить тягу еще в 6 раз. Управление полетом. Наиболее очевидное решение — устроить на экране подвижные закрылки, которые перехватывают часть бокового излучения, изменяя тем самым направление результирующего импульса (рис. 2). ![]() Для уменьшения веса аппарата бортовое оборудование следует свести к минимуму и управлять им с Земли. Какой формы должен быть экран, чтобы он прн минимальной массе наиболее эффективно задерживал излучение? Края плоской пластины можно сделать тоньше, поскольку частицы будут пересекать ее под углом (рис. 3). ![]() Можно изготовить защитную оболочку логарифмического профиля, чтобы все альфа-частицы падали на нее под тупым углом (рис. 4). ![]() Дополнительное достоинство такой оболочки состоит в том, что при движении в земной атмосфере дополнительное экранирование будет обеспечивать находящийся в ней воздух. Выбор траектории. В отличие от обычных ракет радиоактивная ракета создает тягу в течение продолжительного времени, но эта тяга экспоненциально убывает со временем. Однако по мере удаления ракеты от Земли сила земного притяжения уменьшается пропорционально квадрату расстояния, так что потребность в тяге также снижается. Возникает задача найти такое соотношение между этими двумя факторами, при котором ракета сможет уйти в космическое пространство. Например, для изотопа с периодом полураспада 1,5 ч начальная тяга должна превышать начальный вес всего на 7,6%; тогда ракета преодолеет земное притяжение и достигнет в космосе скорости, равной почти 30 км/с. Комментарий Дедала |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх |
||||
|