Корабль, приводимый в движение солнечной энергией, был бы слишком маломощным, утверждает Дедал, даже если бы удалось использовать полностью всю энергию Солнца, падающую на корабль. Поэтому Дедал пытается сконструировать корабль, который будет использовать солнечную энергию, падающую на воду вокруг него. Представьте себе высокую трубу, воронкообразно расширяющуюся к основанию и удерживаемую каким-то способом на высоте нескольких метров над поверхностью воды. Водяной пар, образовавшийся под такой воронкой, станет подниматься в трубу, поскольку он существенно легче воздуха. За счет этого в воронку будет засасываться окружающий воздух, и в трубе создастся тяга. Чем сильнее тяга, тем с большей площади вокруг воронки будут собираться водяные пары, — таким образом энергия водяного пара преобразуется в энергию струйного течения в трубе. Вследствие действия кориолисовой силы, обусловленной вращением Земли, всасываемый поток закручивается по спирали — так Дедал сможет укротить водяной смерч. Действительно, смерчи, ураганы и прочие атмосферные вихри получают свою энергию от Солнца примерно таким образом, но отсутствие направляющих каналов приводит к тому, что эти вихри оказываются устойчивыми только при очень больших размерах и перемещаются непредсказуемым образом. Предлагаемая Дедалом конструкция, напротив, будет захватывать воздух с площади в радиусе, примерно равном высоте трубы (допустим, 100 м), что соответствует мощности в 30 МВт. Даже если принять кпд такого устройства равным 3%, этого достаточно для движения корабля-смерча.
В качестве двигателя Дедал предлагает смелую конструкцию, использующую вращение воздушного потока внутри трубы. Турбинные лопатки, установленные по периметру корабля и внутри трубы, приводят все судно во вращение вокруг вертикальной оси (кстати, это вращение обеспечит гироскопическую стабилизацию довольно-таки неустойчивой высокой трубы). В подводной части корабля будут установлены откидные лопасти, преобразующие вращение корабля в поступательное движение — наподобие ротора вертолета, однако кабина для экипажа не должна вращаться вместе с кораблем. В северном полушарии такое судно будет вращаться против часовой стрелки, в южном полушарии — по часовой стрелке, а при пересечении экватора оно будет на мгновение останавливаться.
New Scientist, April 5, 1979
Комментарий Дедала
Первоначально я планировал сконструировать нечто вроде плавучей теплицы. Мне представлялся покачивающийся на волнах застекленный купол — крышка гигантской столовой масленки, — удерживающий под собой большой объем воздуха. Лучистая энергия Солнца, проходящая под купол, накапливается там за счет «парникового эффекта» — в результате температура воздуха под куполом повышается. При температуре окружающей воды 10°С (давление водяных паров 1230 Н/м2) вода под куполом может нагреться до 40°С (давление водяных паров 7370 Н/м2); разность давлений будет достаточна, чтобы обеспечить плавучесть и движущую силу корабля-смерча. Поскольку в резервуаре-накопителе с зачерненным (для увеличения поглощения) дном вода может быть нагрета солнечными лучами почти до кипения, мои допущения представляются весьма скромными. Для еще большего поглощения солнечной энергии воду под куполом можно было бы подкрасить чем-нибудь вроде сепии (чернил каракатицы). Движение вперед осуществлялось бы за счет реактивной тяги, возникающей при снижении существующего под куполом избыточного давления с помощью отверстий, открывающихся с соответствующей стороны купола. Получается очень славный «солнечный кораблик», у которого полностью отсутствуют движущиеся части и весьма мала площадь смоченной поверхности. Однако подобная конструкция не лишена недостатков. Во-первых, необходимо постоянно следить за тем, чтобы количество выпускаемого из-под купола воздуха было сбалансировано со скоростью испарения воды — иначе купол заполнится водой и затонет. Во-вторых, даже очень широкий и приземистый купол окажется, по-видимому, неустойчивым, и чтобы избежать его опрокидывания, потребуется установка дополнительных поплавков по его периметру. В-третьих, эффективность такого способа передвижения очень невысока. На поверхность купола, представляющего собой в плане квадрат со стороной 100 м, падает до 104 кВт мощности солнечной энергии, однако при столь малой разности давлений кпд реактивного двигателя едва ли достигнет 1%. В результате его мощность не превысит 100 кВт и вряд ли будет достаточна для перемещения такого гиганта. Очевидно, реальный солнечный корабль должен использовать солнечную энергию с гораздо большей площади морской поверхности, чем покрывает его собственная поверхность.
Хороший пример в этом отношении дает нам парусный корабль. Он передвигается за счет ветра, возникающего вследствие конвекции воздушных масс над миллионами квадратных километров океанской поверхности [5]. А нельзя ли создать «собственный», локальный, ветер, который приводил бы корабль в движение? В своей чрезвычайно разумной статье Дж. Бернал (The Scientist Speculates, ed. I. J. Good, Heinemann, 1961, p. 17) указывает, насколько важным открытием было изобретение печной трубы, и отмечает, что влажный воздух быстро поднимается по трубе не столько потому, что он горячий, сколько в силу повышенного содержания влаги: молекулярная масса воды (Мводы=18) существенно меньше эффективной молекулярной массы воздуха (Mвозд=29). Таким образом, труба, всасывающая влажный воздух над поверхностью моря и направляющая его вверх, создает в окружающем пространстве локальный устойчивый поток воздушных масс, т. е. локальный ветер. Самый простой способ использовать энергию вертикальной тяги — установить внутри трубы турбину. Тут я вспомнил, как смерч ускоряет медленное кориолисово вращение воздушных масс вследствие того, что засасывает воздух с большой площади и подтягивает воздушную массу к оси вращения. В соответствии с законом сохранения момента количества движения по мере приближения к оси вращения угловая скорость воздушных частиц быстро растет. Дальнейший ход мыслей очевиден.