33. Характеристика закономерности рядов распределения

С помощью рядов распределения решается важнейшая задача статистики – характеристика и измерение показателей колеблемости для варьирующих признаков.

В вариационных рядах существует определенная связь в изменении частот и значений варьирующего признака: с увеличением варьирующего признака величина частот вначале возрастает до определенной величины, а затем уменьшается. Такого рода изменения называются закономерностями распределения.

Важные свойства кривой распределения – это степень ее асимметрии, высоко– или низковершинность, которые в совокупности характеризуют форму или тип кривой распределения.

Важная задача – это определение формы кривой.

Характер общего распределения предполагает оценку степени его однородности и вычисление показателей асимметрии и эксцесса.

Симметричным называют распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой.

Для симметричных распределений средняя арифметическая, мода и медиана равны между собой.

Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка.

Общим является нормальное распределение, которое может быть представлено графически в виде симметричной куполообразной кривой.

Куполообразная форма кривой показывает, что большинство значений концентрируется вокруг центра измерения, и в действительно симметричном одновершинном распределении средняя, мода и медиана совпадут.

Закон нормального распределения предполагает, что отклонение от среднего значения является результатом большого количества мелких отклонений, что позитивные и негативные отклонения равновероятны и что наиболее вероятным значением всех в равной мере надежных измерений является их арифметическая средняя.

Теоретической кривой распределения называют кривую распределения, которая выражает общую закономерность данного типа.

В кривой нормального распределения отражается закономерность, которая возникает при взаимодействии множества случайных причин.

Для симметричных распределений рассчитывается показатель эксцесса (островершинности).

Эксцесс – выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения.

Оценка показателей асимметрии и эксцесса дает возможность сделать вывод о том, можно ли отнести данное эмпирическое распределение к типу кривых нормального распределения.









Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх