|
||||
|
IV Опасная планета
13 Ба-бах! Жители городка Мэнсон в штате Айова давно знали, что у них под землей происходит что-то странное. В 1912 году рабочий, буривший скважину для городского водопровода, сообщил, что на поверхность поднимается значительное количество необычно деформированной породы — как позднее говорилось в официальном сообщении, «осколки кристаллических пород, вплавленные в жильную породу» и «выброшенные и перевернутые плоские куски пород». Вода тоже была необычной. Она была мягкая, почти как дождевая. Раньше в Айове никогда не находили природной мягкой воды. Хотя необычные горные породы и мягкая вода вызвали удивление, пройдет сорок один год, прежде чем там, в городке на северо-западе штата с двухтысячным, как и ныне, населением, появится группа исследователей из Университета Айовы. В 1953 году пробурив серию экспериментальных скважин, университетские геологи сошлись во мнении, что место действительно представляет собой аномалию, и объяснили деформацию пород каким-то древним точно не установленным вулканическим воздействием. Это заключение соответствовало уровню знаний того времени, но при этом было настолько далеким от истины, насколько только может быть геологическое заключение. Травма, причиненная геологии Мэнсона, была нанесена не из недр Земли, а по крайней мере с расстояния сотни миллионов миль от нее. В какой-то момент в очень далеком прошлом, когда Мэнсон стоял на краю мелководного моря, камень диаметром около двух километров и массой десять миллиардов тонн, летевший со скоростью, возможно, в двести раз превышавшей скорость звука, распорол атмосферу и внезапно врезался в Землю с силой, которую едва ли можно представить. Место, на котором теперь стоит Мэнсон, моментально превратилось в яму глубиною в пять километров и более 30 километров в диаметре. Известняк, в других местах дающий Айове жесткую минерализованную воду был уничтожен, и его заменили принявшие на себя удар породы литосферного фундамента, так поразившие бурильщика в 1912 году. Мэнсонское столкновение было самым крупным событием, когда-либо имевшим место на материковой части Соединенных Штатов среди всех видов событий за все время ее существования. Образовавшийся кратер был таким огромным, что стоя на одной его стороне, даже в ясный день нельзя было увидеть другую. Большой Каньон в сравнении с ним выглядит изящным пустячком. К разочарованию любителей зрелищ за два с половиной миллиона лет ледники, пересекавшие материк, доверху заполнили мэнсонский кратер валунами и глиной, а затем гладко выровняли, так что сегодня ландшафт у Мэнсона и на много миль вокруг него плоский, как стол. Потому-то, разумеется, никто никогда и не слыхал о мэнсонском кратере. В мэнсонской библиотеке вам с радостью покажут подборку газетных статей и ящик с кернами, оставшимися от буровых работ 1991–1992 годов — им просто не терпится показать, — но вам нужно попросить. Постоянной выставки нет, да и в городе нигде нет исторических указателей. Для большинства жителей Мэнсона самым большим событием был торнадо, пронесшийся по Главной улице в 1979 году и разрушивший торговый квартал. Одно из преимуществ окружающего город открытого пространства заключается в том, что опасность видна издалека. Почти все население собралось на одном конце Главной улицы и полчаса следило за приближавшимся смерчем, надеясь, что он повернет. Увидев, что этого не произошло, жители благоразумно разбежались. Увы, четверо бежали недостаточно быстро и погибли. Теперь каждый июнь в Мэнсоне неделю отмечают так называемые Кратерные дни, задуманные для того, чтобы помочь людям забыть об этой печальной годовщине. Вообще-то они не имеют никакого отношения к кратеру. Никто не нашел способа нажить капитал на месте столкновения, которого не видно. «Очень редко приезжают люди и спрашивают, где можно посмотреть кратер, и нам приходится отвечать, что смотреть нечего, — говорит местный библиотекарь Анна Шлапколь. — И тогда они разочарованно уезжают». Однако большинство людей, включая и жителей Айовы, никогда не слыхали о мэнсонском кратере. Даже у геологов он едва удостаивается постраничного примечания. Но на короткое время в 1980-х годах Мэнсон был для геологов самым интересным местом на Земле. Завязка истории относится к началу 1950-х годов, когда сообразительный молодой геолог Юджин Шумейкер побывал у метеоритного кратера в Аризоне. Сегодня этот метеоритный кратер — самое известное место падения метеорита на Земле и популярная туристическая достопримечательность. Правда, в то время там было мало посетителей, и его часто называли кратером Барринджера, по имени состоятельного горного инженера Даниэла М. Барринджера, застолбившего этот участок в 1903 году. Барринджер считал, что кратер образовался в результате падения метеорита массой 10 миллионов тонн с большим содержанием железа и никеля и весьма надеялся разбогатеть, выкопав его. Не подозревая, что все содержимое метеорита испарилось при ударе, он потратил свое состояние и двадцать шесть лет жизни на прокладку туннеля, который ничего не дал. По нынешним критериям, исследования кратеров в начале 1900-х годов были несколько упрощенными, если не сказать больше. Первый видный исследователь, Г. К. Гильберт из Колумбийского университета, моделировал воздействие ударов, бросая детские стеклянные шарики в миски с овсянкой. (По причинам, которые я не смог выяснить, Гильберт проводил свои опыты не в лаборатории Колумбийского университета, а в гостиничном номере.) Как бы то ни было, из этих опытов Гильберт заключил, что лунные кратеры действительно образовались в результате столкновений — что само по себе было довольно радикальным для того времени мнением, — но не земные. Большинство ученых не хотели заходить так далеко. Для них лунные кратеры были свидетельствами активности древних вулканов, не более того. Немногие оставшиеся на Земле кратеры (большинство постепенно подверглось эрозии) обычно объяснялись другими причинами или же рассматривались как редко встречающиеся случайные явления. Во время появления Шумейкера расхожим было мнение, что Аризонский метеоритный кратер образовался в результате подземного парового взрыва. Шумейкер ничего не знал о подземных паровых взрывах — да и не мог знать: их не было в природе, — но он знал все о зонах распространения ударных волн. Одной из его первых работ по окончании колледжа было изучение взрывных поясов на полигоне ядерных испытаний Юкка Флэте в Неваде. Он, как до него Барринджер, пришел к выводу, что нет никаких оснований предполагать вулканическую активность в Аризонском кратере, зато вокруг обнаруживалось огромное количество других пород — главным образом аномально чистых кремнеземов и магнетитов, — которые указывали на удар из космоса. Заинтригованный находками, он в свободное время занялся этим вопросом. Работая сначала вместе со своей сотрудницей Элеанор Хелин, а затем со своей женой Кэролин и коллегой по работе Дэвидом Леви, Шумейкер начал систематичное обследование внутренней части Солнечной системы. Каждый месяц они проводили неделю в Паломарской обсерватории в Калифорнии, отыскивая объекты, в первую очередь астероиды, траектории которых пересекались с орбитой Земли. «Когда мы начинали, за все время астрономических наблюдений было открыто чуть больше дюжины таких тел, — через несколько лет вспоминал Шумейкер в телевизионном интервью. — В двадцатом веке астрономы, по существу, забросили Солнечную систему, — добавил он. — Их внимание было обращено к звездам, к галактикам». Шумейкер с коллегами обнаружили, что Солнечная система таит в себе значительные опасности, намного более серьезные, чем когда-либо представляли. Астероиды, как многим известно, — это каменистые тела, вращающиеся в довольно разреженном поясе между Марсом и Юпитером. На иллюстрациях они всегда изображаются беспорядочной плотной кучей, но на самом деле Солнечная система — это довольно просторное место и обычно астероид удален от ближайшего соседа примерно на полтора миллиона километров. Никто даже приблизительно не знает, сколько астероидов кувыркаются в межпланетном пространстве, но считается, что их может насчитываться не меньше миллиарда. Предполагают, что они должны были стать планетой, но так и не стали из-за тяготения Юпитера, мешавшего — и мешающего — им слиться. Когда астероиды были впервые открыты в 1800-х годах — самый первый был обнаружен в первый день века сицилийцем Джузеппе Пиацци, — их сочли за обычные планеты и первые два получили названия Церера и Паллада. Только дотошный анализ астронома Уильяма Гершеля позволил определить, что они намного меньше планет. Гершель назвал их астероидами — по латыни «звездоподобными», что тоже несколько неудачно, поскольку они совсем не похожи на звезды. Теперь иногда их более точно называют планетоидами. В 1800-х годах поиск астероидов стал популярным занятием, и к концу столетия их насчитывалось около тысячи. Проблема заключалась в том, что никто не вел систематического учета. К началу 1900-х годов часто бывало невозможно определить, является ли попавший в поле зрения астероид новым или же одним из замеченных раньше, а потом потерянных. К тому же в то время астрофизика продвинулась настолько далеко, что мало кто из астрономов выражал желание посвятить жизнь таким приземленным вещам, как каменистые планетоиды. Лишь немногие вообще проявляли хоть какой-то интерес к Солнечной системе, и в их числе уроженец Голландии Джерард Койпер, именем которого назван пояс объектов за пределами орбиты Нептуна. Благодаря его работам в Обсерватории Мак-Дональда в Техасе, позднее продолженной другими астрономами в Центре малых планет в Цинциннати и в рамках проекта Spacewatch в Аризоне, длинный список утерянных астероидов постепенно сокращался, пока к завершению двадцатого века не остался единственный пропавший из известных астероидов — объект, обозначаемый 719 Альберт. Наблюдавшийся в последний раз в октябре 1911 года, он наконец после 89-летнего отсутствия был обнаружен в 2000 году. Так что в смысле изучения астероидов двадцатый век, по существу, был всего лишь долгим упражнением в бухгалтерском учете. В самом деле, лишь в последние несколько лет астрономы начали подсчитывать и не упускать из виду сообщество астероидов. На июль 2001 года получили названия и идентифицированы 26 тысяч астероидов — половина из них в последние два года. Поскольку их предположительно насчитывается до миллиарда, подсчет явно еще только начинается. В известном смысле это едва ли имеет значение. Идентификация астероида не делает его безопасным. Если даже каждый астероид в Солнечной системе получит имя и будет известна его орбита, никто не сможет сказать, какие пертурбации могут заставить его, кувыркаясь, лететь в нашу сторону. Мы еще не можем предсказать возмущения на поверхности собственной планеты. Пустите каменные глыбы свободно плавать в космическом пространстве, и вам никогда не узнать, как они себя поведут[183]. Представьте, что орбита Земли — это своего рода автострада, на которой мы — единственный автомобиль, но которую регулярно переходят пешеходы, совсем не знающие, куда глядеть, прежде чем шагнуть с обочины. По крайней мере 90 процентов этих пешеходов нам совершенно не известны. Мы не знаем, где они живут, когда начинают и заканчивают работу, как часто встречаются на нашем пути. Все, что мы знаем, так это то, что в каком-то месте через неопределенные промежутки времени они перебегают дорогу, по которой мы мчимся со скоростью более ста тысяч километров в час. Как заметил Стивен Остро[184] из Лаборатории реактивного движения: «Предположим, что вы можете нажать кнопку и осветить все пересекающиеся с орбитой Земли астероиды диаметром более 10 метров; тогда в небе появится больше ста миллионов таких тел». Словом, вы увидите не пару тысяч далеких мерцающих звезд, а миллионы и миллионы куда более близких беспорядочно движущихся тел, «способных столкнуться с Землей и двигающихся по небу разными путями и с разной скоростью. Ощущение было бы не из приятных». Что ж, можете волноваться — они тут. Их просто не видно. Считается — хотя это всего лишь предположение, основанное на экстраполировании частоты появления кратеров на Луне, — что нашу орбиту регулярно пересекают около двух тысяч достаточно крупных астероидов, способных угрожать существованию цивилизации. Но даже небольшой астероид — скажем, размером с дом — мог бы уничтожить целый город. Количество таких «малышек» на орбитах, пересекающихся с орбитой Земли, почти наверняка достигает сотен тысяч, а возможно, и миллионов, и их почти невозможно отследить. Первый обнаружили лишь в 1991 году. Он получил обозначение 1991 ВА и был замечен уже после того, как пролетел на расстоянии 170 тысяч километров от Земли — по космическим меркам, равносильно тому, как если бы пуля прошила рукав, не задев руки[185]. Двумя годами позже другой астероид, чуть покрупнее, прошел мимо нас в 145 тысячах километров — самое близкое из отмеченных прохождений. Его тоже не видели, пока он не пролетел, и он мог бы упасть на Землю без предупреждения[186]. Как пишет Тимоти Феррис в журнале «Нью-Йоркер», такие близкие промахи, возможно, случаются два-три раза в неделю и остаются незамеченными. Тело в сотню метров в поперечнике нельзя увидеть в наземный телескоп, пока ему не останется лететь до нас всего несколько дней, да и то если телескоп будет случайно наведен на него, что маловероятно, потому что даже теперь людей, ищущих такие тела, не так уж много. Обычно приводят такое западающее в память сопоставление: людей, активно занимающихся поисками астероидов, во всем мире не больше числа занятых в одном типичном ресторане «Макдоналдс». (Ныне фактически несколько больше. Но не намного.) В то время как Юджин Шумейкер пытался привлечь внимание людей к потенциальным опасностям внутри Солнечной системы, в Италии благодаря работе одного молодого геолога из лаборатории Лэмонта Догерти при Колумбийском университете без большого шума развертывалось еще одно исследование, на первый взгляд абсолютно не связанное с астероидами. В начале 1970-х годов Уолтер Альварес проводил полевые съемки в симпатичном ущелье Боттачионе, близ горного городка Губбио в Умбрии, когда его любопытство привлекла узкая полоска красноватой глины, разделявшая два древних слоя известняка — один из мелового периода, другой из третичного. Эта точка известна в геологии под названием КТ-границы* и соответствует времени 65 миллионов лет назад, когда останки динозавров и примерно половины других видов животных внезапно исчезают из состава ископаемых. Альвареса заинтересовало, с чем же таким связана эта тонкая прослойка глины, всего в 6 миллиметров толщиной, что было способно вызвать столь драматический момент в истории Земли. --- * (Это обозначение происходит от названий двух периодов — мелового и следующего за ним третичного. Меловой период называется Cretaceous. Однако в названии использована буква «К», поскольку «С» уже занята для обозначения кембрийского (Cambrian) периода. Выбор буквы «К» в разных источниках аргументируют ссылками на греческое название мелового периода (kreta) или на немецкое (Kreide). И то и другое в переводе означает «мел», что соответствует меловому периоду.) В то время обычные представления о вымирании динозавров не отличались от тех, которые существовали сотней лет раньше, во времена Чарлза Лайеля, — а именно, что динозавры вымирали на протяжении миллионов лет. Но незначительная толщина глиняной прослойки наводила на мысль, что в Умбрии, а возможно, и в других местах, произошло нечто более внезапное. К сожалению, в 1970-х годах не существовало способов определить, сколько потребовалось времени для образования подобного отложения. При обычном ходе вещей Альварес почти наверняка оставил бы проблему; но, к счастью, рядом оказался способный помочь самый близкий человек, занимавшийся другой областью науки, — его отец Луис. Луис Альварес был знаменитым физиком; в предыдущем десятилетии получил Нобелевскую премию в области физики. Он всегда чуть снисходительно относился к привязанности сына к камням, но данная проблема заинтриговала и его. Ему пришло в голову, что ответ, возможно, лежит в космической пыли. Ежегодно на Земле скапливается около 30 тысяч тонн «космических сферул», попросту — космической пыли. Это было бы довольно много, если смести ее в одну кучу, но бесконечно мало, когда она рассеяна по земному шару. В эту тонкую пыль вкраплены экзотические элементы, которых не так уж много находят на Земле. Среди них такой элемент, как иридий, которого в космосе в тысячу раз больше, чем в земной коре (потому что, как считают, большая часть земного иридия погрузилась в ядро, когда планета была молодой). Луис Альварес знал, что один из его коллег, работавший в лаборатории Лоуренс Беркли в Калифорнии, Фрэнк Асаро, разработал способ очень точного измерения химического состава глин, с использованием процесса, называемого нейтронной активацией. Этот процесс включает бомбардировку нейтронами образцов в небольшом ядерном реакторе и тщательный подсчет испускаемых гамма-квантов — чрезвычайно тонкая и кропотливая работа. До этого Асаро применял этот метод, исследуя гончарные изделия. Но Альварес рассудил, что если измерить количество одного из экзотических элементов в образцах его сына и сравнить с ежегодным темпом отложения, то можно узнать, сколько времени потребовалось для формирования образцов. Октябрьским днем 1977 года Луис и Уолтер Альваресы навестили Асаро и уговорили его провести для них необходимые исследования. Просьба действительно граничила с нахальством. Они просили Асаро потратить месяцы на кропотливые измерения геологических образцов лишь для того, чтобы подтвердить казавшееся с самого начала очевидным — что тонкий слой глины образовался за время, на которое указывала его толщина. Никто, естественно, не ожидал от исследования каких-либо поразительных открытий. «Должен сказать, они были прелестны и умели убеждать, — вспоминал Асаро в разговоре в 2002 году. — Предложение показалось мне интересным, и я согласился попробовать. К сожалению, на руках было много работы, и я смог взяться за дело лишь через восемь месяцев. — Он сверился с записями того времени. — 21 июня 1978 года в 1.45 пополудни мы поместили образец в прибор. Он проработал 224 минуты, и мы увидели, что получаются интересные результаты, так что мы остановили работу и взглянули на итоги.» Результаты оказались настолько неожиданными, что трое ученых сначала подумали, что ошиблись. Содержание иридия в образце Альвареса более чем в 300 раз превышало нормальный уровень — намного больше всего, что можно было предсказать. В последующие месяцы Асаро со своей коллегой Хелен Майкл работали до тридцати часов кряду исследуя образцы («Стоит начать — и уже невозможно остановиться», — пояснил Асаро), и неизменно с теми же результатами. Пробы других образцов из Дании, Испании, Франции, Новой Зеландии, Антарктиды показывали, что содержание иридия было очень высоким во всем мире и порой превышало нормальный уровень в пятьсот раз. Ясно, что причиной такого захватывающего подскока могло быть что-то значительное и внезапное, возможно, катастрофическое. После долгих размышлений Альваресы пришли к заключению, что самое вероятное объяснение — во всяком случае, для них — заключалось в том, что в Землю ударился либо астероид, либо комета. Мысль, что Земля время от времени может подвергаться разрушительным ударам, не так уж нова, как полагают ныне. Еще в 1942 году такую возможность высказал на страницах журнала Popular Astronomy («Популярная астрономия») астрофизик из Северо-западного университета Ральф Б. Болдуин. (Он опубликовал статью там, потому что ни одно научное издание не соглашалось ее печатать.) По крайней мере еще двое видных ученых, астроном Эрнст Ёпик и химик, нобелевский лауреат Гарольд Юри, также в разное время высказывались в поддержку этой точки зрения. Даже палеонтологи не оставили ее без внимания. В 1956 году профессор университета штата Орегон М. У. де Лаубенфельз в публикации в Journal of Paleontology («Палеонтологический журнал») фактически предвосхитил теорию Альвареса, высказав мысль, что динозаврам был, возможно, нанесен смертельный удар из космоса. А в 1970 году президент Американского палеонтологического общества Дьюи Дж. Макларен на ежегодной конференции высказался в пользу возможности того, что причиной более раннего события, известного как фраснское вымирание, был удар внеземного тела. Словно бы подчеркивая, что идея уже давно не нова, одна голливудская студия в 1979 году даже поставила фильм, назвав его «Метеор» («Пять миль в поперечнике… Приближается со скоростью 30 тысяч миль в час — и негде укрыться!»), с Генри Фонда, Натали Вуд, Карлом Малденом и внушительных размеров камнем в главных ролях. Так что, когда в первую неделю 1980 года Альваресы на заседании Американской ассоциации содействия развитию науки объявили о своем убеждении, что вымирание динозавров не тянулось миллионы лет и не было частью неумолимого медленного процесса, а явилось результатом одиночного явления взрывного характера, это сообщение не должно было никого шокировать. Но шокировало. Повсюду, и особенно среди палеонтологов, оно было воспринято как возмутительная ересь. «Видите ли, не следует забывать, — вспоминает Асаро, — что мы в этом деле считались дилетантами. Уолтер был геологом, специализировавшимся в области палеомагнетизма, Луис физиком, а я был химиком-ядерщиком. И мы посмели говорить палеонтологам, что решили проблему, которая ускользала от них больше столетия. Неудивительно, что они не спешили принять нас с распростертыми объятиями». — «Нас поймали за тем, что мы занимались геологией, не имея лицензии», — пошутил Луис Альварес. Но в импактной теории[187] было еще нечто куда более отталкивающее. Убеждение, что происходящие на Земле процессы носили постепенный характер, было основополагающим для естественной истории еще со времен Лайеля. К 1980-м годам катастрофизм так давно вышел из моды, что стал попросту немыслим. Как заметил Юджин Шумейкер, для большинства геологов идея об опустошительном столкновении «шла вразрез с их научной религией». Не способствовало признанию и то, что Луис Альварес не скрывал своего пренебрежительного отношения к палеонтологам и к их вкладу в научное познание. «Среди них нет действительно хороших ученых. Это скорее собиратели почтовых марок», — писал он в «Нью-Йорк таймс», в статье, которая по сию пору не утратила яда. Противники теории Альвареса предлагали сколько угодно альтернативных объяснений отложениям иридия, например, что они вызваны продолжительными извержениями вулканов в Индии, ныне носящими название деканские траппы («трапп» происходит от шведского названия определенного вида лавы; «Декан» — нынешнее название географического района), но главным образом напирали на отсутствие доказательств, что динозавры внезапно исчезли из числа ископаемых животных именно в отмеченный иридиумом разграничительный период. Одним из самых решительных противников импактной теории был Чарлз Оффисер из Дартмурского колледжа. Он настаивал, что иридий откладывался в результате вулканической деятельности, в то же время признавая в газетном интервью, что фактически не имеет доказательств этого. Даже в 1988 году более половины всех опрошенных американских палеонтологов были по-прежнему убеждены, что столкновение с астероидом или кометой не имело никакого отношения к динозаврам. Единственное, что могло убедительно подтвердить теорию Альваресов, было место столкновения, но это было единственное доказательство, которым они не располагали. И тут на сцену выходит Юджин Шумейкер. В Айове у Шумейкера была родственница — невестка, преподававшая в университете этого штата, — а Мэнсонский кратер был ему давно знаком по собственным работам. Благодаря Шумейкеру все взоры обратились теперь к Айове. Ремесло геолога сильно меняется от места к месту. В Айове, штате равнинном и стратиграфически небогатом событиями, это дело сравнительно спокойное. Ни тебе альпийских пиков или скрежещущих ледников, ни огромных залежей нефти или благородных металлов, ни намека на изливающуюся лаву. Если вы служите геологом в штате Айова, большая часть вашего времени уходит на оценку «планов утилизации навоза», которые должны периодически представлять все «владельцы стойловых помещений» штата — по-нашему, хозяева свиноферм. В Айове пятнадцать миллионов свиней, так что приходится перерабатывать уйму навоза. Я ничуть не насмехаюсь — это жизненно важный и благородный труд; он сохраняет от загрязнения водоемы Айовы, — но при самых лучших намерениях это все же совсем не то, что увертываться от вулканических бомб на горе Пинатубо или карабкаться по расщелинам ледника в Гренландии в поисках кристаллов с останками древних живых существ. Так что можно представить возбуждение, охватившее сотрудников Департамента природных ресурсов Айовы, когда в середине 1980-х годов внимание геологов мира сосредоточилось на Мэнсоне и его кратере. Траубридж-холл в Айова-сити — это относящаяся к началу прошлого века громадина из красного кирпича, вмещающая факультет наук о Земле Университета Айовы и — где-то высоко, чуть ли не на чердаке, — Департамент природных ресурсов Айовы с его геологами. Сегодня никто не может толком вспомнить, когда и уж тем более почему геологов штата поместили в здании факультета, но у меня создалось впечатление, что место им выделяли неохотно — кабинеты тесные, с низкими потолками, и в них не так легко попасть. Когда показывают туда дорогу, то кажется, что тебя, того и гляди, приведут на край крыши или помогут влезть через окно. Рей Андерсон и Брайен Витцке провели свою трудовую жизнь здесь, среди беспорядочных груд бумаги, журналов, свернутых карт и увесистых образцов пород. (Геологам не приходится искать пресс-папье.) Если вам здесь нужно что-нибудь достать — лишний стул, кофейную чашку, зазвеневший телефон, — то придется перекладывать разбросанные кругом кучи документов. «Мы вдруг оказались в центре событий», — расплываясь в улыбке при воспоминании об этом, рассказывал Андерсон, когда я встретился с ним и Витцке одним дождливым июньским утром. — Замечательное было время». Я спросил их о Юджине Шумейкере, человеке, который, кажется, пользуется всеобщим уважением. «О, это был мировой мужик, — не задумываясь ответил Витцке. — Если бы не он, все это дело и с места бы не сдвинулось. Даже при его поддержке потребовалось два года для того, чтобы все завертелось. Бурение — дело дорогое, тогда было около тридцати пяти долларов за фут, теперь больше, а нужно было идти вглубь на три тысячи футов.» «Иногда еще больше», — добавляет Андерсон. «Иногда больше, — соглашается Витцке. — И в нескольких местах. Так что речь шла о куче денег. Куда больше, чем позволил бы наш бюджет.» В итоге, был начат совместный эксперимент Геологических служб Айовы и США. «По крайней мере, мы думали, что совместный», — кисло усмехнувшись, заметил Андерсон. «Для нас это стало хорошим уроком, — продолжал Витцке. — Все это время наука не могла похвастаться качеством — спешили обнародовать результаты, не выдерживавшие элементарной проверки. Один из таких случаев имел место на ежегодном собрании Американского геофизического союза в 1985 году где Гленн Айзетт и Ч. Л. Пиллмор из Геологической службы США объявили, что время образования Мэнсонского кратера совпадает с периодом вымирания динозавров. Это заявление привлекло значительное внимание прессы, но, к сожалению, оказалось чересчур поспешным. Более тщательная проверка данных показала, что мэнсонский удар не только был слишком невелик, но и произошел на девять миллионов лет раньше, чем надо.» Андерсон и Витцке впервые узнали об этой неудаче, прибыв на конференцию в Северной Дакоте. К ним подходили люди и, сочувственно глядя, произносили: «Слыхали о вашей потере», имея в виду кратер. Для обоих было новостью, что Айзетт и другие ученые из Геологической службы США только что огласили уточненные цифры, свидетельствовавшие, что мэнсонский метеорит в конечном счете не был тем телом, которое привело к вымиранию животных. «Для нас это стало довольно серьезным потрясением, — вспоминает Андерсон. — Я хочу сказать, что мы занимались очень важным для себя делом, а потом вдруг оказались не у дел. Еще хуже было узнать, что люди, которые, как мы думали, с нами сотрудничали, не дали себе труда поделиться с нами новыми данными.» — «Почему?» Он пожал плечами: «Кто знает? Во всяком случае, начинаешь понимать, какой непривлекательной может стать наука, когда ты занимаешься ею на определенном уровне.» Поиски переместились в другие места. В 1990 году один из исследователей, Алан Хильдебранд из университета штата Аризона, познакомился с репортером из «Хьюстон кроникл», который, как оказалось, знал о большой непонятной кольцевой формации 193 км длиной и 48 км шириной, расположенной у мексиканского полуострова Юкатан, в Чиксулуб, близ городка Прогресо, примерно в 950 км точно к югу от Нового Орлеана. Формацию обнаружила мексиканская нефтяная компания «Пемекс» в 1952 году — по случайному совпадению, в том же году, когда Юджин Шумейкер впервые посетил метеоритный кратер в Аризоне, — но геологи компании в соответствии с духом времени пришли к заключению, что она вулканического происхождения. Хильдебранд поехал на место и быстро решил, что это именно тот кратер, что нужен. К началу 1991 года, почти ко всеобщему удовлетворению, было установлено, что Чиксулуб является местом падения метеорита. И все же многие были не в состоянии представить, что может наделать столкновение. Как вспоминал в одном из своих очерков Стивен Джей Гоулд: «Помню, я поначалу питал глубокие сомнения относительно масштабов воздействия такого явления… Каким образом тело всего в 6 миль диаметром должно привести к таким опустошительным последствиям на планете диаметром 8 тысяч миль?» Однако вскоре появилась удобная возможность проверить эту теорию, когда Шумейкеры и Леви открыли комету Шумейкеров — Леви 9, которая, как они скоро поняли, направлялась к Юпитеру. Впервые люди могли стать свидетелями столкновения в космосе — и хорошо разглядеть его благодаря новому космическому телескопу Хаббла. Большинство астрономов, по словам Кертиса Пиблза, ожидали немногого, особенно потому, что комета не являлась плотным шаром, а представляла собой цепочку из 21 осколка. «По-моему, — писал один астроном, — Юпитер проглотит эти кометы, даже не рыгнув.» За неделю до столкновения журнал Nature поместил статью «Большая шутиха приближается», предсказывая, что столкновение не даст ничего, кроме метеорного дождя. Столкновения начались 16 июля 1994 года, продолжались неделю и были намного сильнее, чем кто-либо — возможно, за исключением Юджина Шумейкера, — ожидал. Один фрагмент, обозначаемый буквой G, ударил с силой в 6 миллионов мегатонн — в 75 раз сильнее всего наличного ядерного оружия. Фрагмент G был размером лишь с небольшую гору, а раны на поверхности Юпитера были размером с Землю. Это стало последним ударом для критиков теории Альвареса. Луису Альваресу не довелось узнать об открытии кратера Чиксулуб и о комете Шумейкеров — Леви — он умер в 1988 году. Шумейкер тоже умер рано. В третью годовщину столкновения с Юпитером он с женой находился в австралийской глубинке, куда ездил каждый год в поисках следов столкновений с космическими телами. На проселочной дороге в пустыне Танами — обычно самом безлюдном месте на Земле, — перевалив через небольшой подъем, они столкнулись со встречной машиной. Шумейкер скончался на месте, жена была ранена. Часть праха ученого отправили на космическом аппарате «Лунар Проспектор» на Луну. Оставшийся был рассеян над Аризонским метеоритным кратером. У Андерсона и Витцке больше не было кратера, убившего динозавров, «но у нас пока еще самый большой и превосходно сохранившийся кратер ударного происхождения в материковой части Соединенных Штатов», — сказал Андерсон. (Для сохранения превосходной степени применительно к Мэнсону требуется известная словесная натяжка. Другие кратеры крупнее, особенно Чезапикский залив, который в 1994 году был признан местом столкновения с космическим телом; но они либо находятся на некотором расстоянии от берега, либо деформированы.) «Чиксулуб похоронен под 2–3 км известняка и большей частью расположен не на суше, что затрудняет его исследование, — продолжает Андерсон, — тогда как Мэнсон доступен гораздо лучше. Будучи скрыт под землей, он фактически сохранил сравнительно нетронутый вид.» Я спросил у них, за какое время мы получим предупреждение, если подобный кусок камня приблизится к нам сегодня. «О, вероятно, ни за какое, — беззаботно заметил Андерсон. — Его не будет видно невооруженным глазом, пока он не нагреется, а это случится, когда он врежется в атмосферу, а это произойдет за секунду до удара о Землю. Речь идет о чем-то таком, что летит в десятки раз быстрее самой быстрой пули. Если его не увидит кто-нибудь в телескоп, в чем отнюдь нет уверенности, это событие застигнет нас врасплох.» Насколько сильным будет удар, зависит от множества параметров: от скорости и траектории; от того, каким будет столкновение — лобовым или по касательной; от массы и плотности ударяющего объекта и многого другого, — ни об одном из них мы не в состоянии узнать спустя много миллионов лет после события. Но что могут сделать ученые — и Андерсон с Витцке это сделали, — так это измерить место столкновения и вычислить количество выделившейся энергии. На этом основании они могут строить сценарии и оценивать, на что это было похоже, или — еще страшнее — на что это было бы похоже в наши дни. Астероид (или комета), летящий с космической скоростью, вошел бы в земную атмосферу с такой быстротой, что воздух под ними не расступился бы, а сжался, как в велосипедном насосе. Те, кто пользовался таким насосом, знают, что при сжатии воздух быстро нагревается, и температура поднялась бы до 60 тысяч градусов по шкале Кельвина, что в десять раз выше температуры поверхности Солнца. В этот момент входа астероидов в атмосферу все на его пути — люди, дома, заводы, автомобили — сморщилось и сгорело бы, как целлофан в пламени[188]. Через секунду после вхождения в атмосферу, там, где жители Мэнсона только что занимались своими делами, метеорит вонзился бы в земную поверхность. Сам метеорит моментально бы испарился, но взрывом выбросило бы тысячу кубических километров горных пород, почвы и чрезвычайно горячих газов. В радиусе 250 км все живое, еще не сгоревшее при падении космического тела, погибло бы от взрыва. Распространяющаяся с огромной скоростью первоначальная взрывная волна смела бы все на своем пути. Для находящихся за пределами зоны моментального опустошения первым признаком катастрофы стала бы ослепительная вспышка, небывало яркая для человеческого глаза, за которой в течение минуты-другой последовало бы невообразимо величественное апокалипсическое зрелище: вздымающаяся до небес, заполняющая все видимое пространство и мчащаяся со скоростью тысяч км/ч клубящаяся стена тьмы. Ее приближение было бы ужасающе беззвучным, поскольку она будет надвигаться намного быстрее звука. Если кто, случись, взглянул бы в том направлении из высокого здания, скажем, в Омахе или Де-Мойне, то увидел бы надвигающуюся странную пелену хаоса, за которой наступило бы вечное забытье. В считанные минуты на пространстве от Денвера до Детройта, включая то, что когда-то было Чикаго, Сент-Луисом, Канзас-сити, Миннеаполисом с Сент-Полом — словом, на всем Среднем Западе почти все стоящие предметы были бы сровнены с землей или загорелись, а почти все живое погибло. В пределах 1500 км людей посбивало бы с ног или иссекло тучами летящих предметов. За пределами 1500 км разрушения от взрыва постепенно уменьшались бы. Но это только первоначальная ударная волна. Никто не может пойти дальше догадок, каким был бы общий ущерб. Ясно только, что он был бы стремительным и глобальным. Удар почти наверняка вызвал бы серию опустошительных землетрясений. По всей планете начали бы громыхать и извергаться вулканы. Поднялись бы, направляясь к далеким берегам, разрушительные цунами. В течение часа Землю накрыло бы черное облако, повсюду разлетались бы горящие обломки, предавая огню большую часть планеты. Предполагается, что к концу первого дня погибло бы по крайней мере полтора миллиарда человек. Сильные помехи в ионосфере повсюду вывели бы из строя средства связи, так что оставшиеся в живых не имели бы представления, что происходит в других местах и куда податься. Впрочем, вряд ли это имело бы значение. Как отметил один комментатор, бежать означало бы «предпочесть быстрой смерти медленную. Любые возможные переселения мало повлияли бы на масштабы гибели, ибо способность Земли поддерживать жизнь повсеместно сократилась бы.» Поднявшиеся после удара и последовавших за ним пожаров тучи сажи и пепла на много месяцев, а возможно, и лет, заслонили бы солнце, нарушив цикл развития растений. В 2001 году ученые Калифорнийского технологического института исследовали изотопы гелия, взятые из осадочных пород на границе мелового и третичного периодов, и пришли к выводу, что столкновение воздействовало на климат Земли около 10 тысяч лет. Это свидетельствует в пользу представления о том, что вымирание динозавров произошло быстро и неожиданно, если судить по геологическим меркам. Мы можем только догадываться, насколько успешно человечество справится, и справится ли, с подобным явлением. И не забывайте, что, по всей вероятности, это произошло бы без предупреждения, как гром с ясного неба. Но предположим, что мы увидели приближение такого объекта. Что бы мы предприняли? Все предполагают, что мы запустили бы ядерную боеголовку и разнесли его вдребезги. Однако в связи с этой идеей возникает ряд проблем. Во-первых, как отмечает Джон С. Льюис[189], наши ракеты не предназначены для работы в космосе. У них не хватает силенок избавиться от притяжения Земли, а если бы даже хватило, нет устройств, чтобы провести их через миллионы километров космического пространства[190]. Еще меньше возможность послать корабль с космическими ковбоями, которые сделали бы за нас эту работу, как в фильме «Армагеддон». У нас больше нет ракеты, достаточно мощной, чтобы послать людей даже на Луну. Последняя способная на это ракета «Сатурн-5» давно отправлена на покой, так и не получив замены. Не можем мы быстро создать и новую, потому что, как ни поразительно, в ходе генеральной уборки в НАСА были уничтожены чертежи пусковых установок для ракеты «Сатурн». Если бы нам даже каким-то образом удалось попасть боеголовкой в астероид и разнести его на куски, остается возможность того, что мы просто получим серию каменных осколков, которые станут один за другим падать на нас наподобие кометы Шумейкеров — Леви, упавшей на Юпитер, с той разницей, что в данном случае осколки будут сильно радиоактивными[191]. Охотник за астероидами из университета Аризоны Том Герелс[192] считает, что даже предупреждения за год возможно будет недостаточно, чтобы принять соответствующие меры. Однако куда вероятнее, что мы не увидим объект — даже комету — раньше чем за шесть месяцев, что будет уже слишком поздно. Сближение кометы Шумейкеров — Леви 9 с Юпитером явно бросалось в глаза, начиная с 1929 года, но прошло больше половины столетия, прежде чем это заметили. Из-за того, что движение этих объектов так трудно предвычислять и при этом возникают значительные погрешности, даже когда известно, что объект летит в нашу сторону, мы почти до конца — во всяком случае, до последней пары недель — не будем знать, неизбежно ли столкновение[193]. На протяжении почти всего периода приближения нам пришлось бы находиться в конусе неопределенности. Это наверняка были бы самые интересные несколько месяцев в мировой истории. А представьте празднование, если бы он благополучно пролетел мимо. «Но как часто случаются явления, подобные мэнсонскому столкновению?» — уходя, спросил я Витцке и Андерсона. «О, в среднем раз в миллион лет», — ответил Витцке. «И не забывайте, — добавил Андерсон, — что это было относительно незначительное событие. Известно ли вам, сколько видов вымерло в связи с мэнсонским столкновением?» — «Ни малейшего представления». — «Ни одного, — со странным чувством удовлетворения произнес он. — Ни единого.» Разумеется, поспешили добавить Витцке и Андерсон, что, как они только что описали, на большей части планеты были бы ужасные разрушения и на много миль вокруг места падения все живое было бы полностью уничтожено. Но жизнь — явление стойкое, и, когда дым рассеялся бы, уцелело бы достаточно особей каждого вида, которым повезло, и ни один вид не исчез бы. Хорошая новость, как представляется, состоит в том, что истребить вид — ужасно трудное дело. Плохая же новость в том, что никогда нельзя рассчитывать на хорошие новости. Что еще хуже, так это то, что не обязательно разыскивать приводящие в оцепенение опасности в космическом пространстве. Как мы вскоре увидим, Земля и без того полна угроз. 14 Огонь под ногами Летом 1971 года молодой геолог по имени Майк Вурхис вел изыскания в заросшей чертополохом местности на востоке Небраски недалеко от его родного городка Орчард. Проходя по дну глубокого оврага, он заметил что-то белевшее наверху в кустарнике и поднялся взглянуть. Там он увидел прекрасно сохранившийся череп молодого носорога, вымытый прошедшими недавно сильными дождями. А в нескольких метрах от него, как оказалось, находилось самое необычное захоронение ископаемых остатков, когда-либо открытое в Северной Америке: высохший водоем, служивший общей могилой многим десяткам животных — носорогам, зебровидным лошадям, саблезубому оленю[194], верблюдам, черепахам. Все погибли в результате загадочного катаклизма чуть менее 12 миллионов лет назад, в период, известный в геологии как миоценовый. В те дни Небраска располагалась на обширной жаркой равнине, очень похожей на Серенгети в нынешней Африке. Животных нашли похороненными под вулканическим пеплом трехметровой толщины. Загадка заключалась в том, что в Небраске никогда не было никаких вулканов. Сегодня открытое Вурхисом место называется Эшфоллским парком захоронений ископаемых животных. Здесь есть новый центр для посетителей и музей с хорошо продуманными экспозициями по геологии Небраски и истории захоронений ископаемых животных. Центр включает лабораторию со стеклянной стеной, через которую посетители могут видеть палеонтологов, занятых очисткой скелетов. В то утро, когда я проходил мимо, в лаборатории в одиночестве работал веселый седоватый малый в синей спецовке, в котором я узнал Майка Вурхиса, теперь ведущего документальной программы «Горизонт» на Би-би-си. В Эшфоллском парке нет большого наплыва посетителей — он находится у черта на куличках, и Вурхис, похоже, был рад поводить меня по парку. Он провел меня на то место наверху шестиметрового откоса, где он обнаружил свою находку. «Искать здесь кости было бессмысленным занятием, — весело начал он. — Но я-то костей не искал. В то время я собирался составить геологическую карту востока Небраски и, так сказать, просто бродил по окрестностям. Если бы я не поднялся по склону и если бы дождями не вымыло тот череп, то прошел бы мимо и всего этого никогда бы не нашли.» Он жестом указал на крытый и огороженный участок, где ведутся основные раскопки. Там нашли лежавшие в беспорядке останки около двухсот животных. Я спросил, в каком смысле он считает здешние места неподходящими для поисков костей. «Ну, если ищешь кости, то нужны обнажения пород. Вот почему большая часть палеонтологических раскопок ведется в жарких сухих местах. Не потому, что там больше костей. Просто там есть возможность их отыскать. А в таком окружении, — он широким жестом обводит безбрежную однообразную прерию, — не знаешь, где начать. Здесь, может быть, находится действительно великолепный материал, но на поверхности нет никаких подсказок, откуда начинать поиски». Сначала считали, что животные были погребены живьем, и Вурхис в 1981 году в статье в National Geographic именно так и написал. «В статье место находок названо «Помпеями доисторических животных», — рассказывал он мне. — Названо неудачно, потому что вскоре мы поняли, что животные погибли не сразу. Все они страдали неким недугом, называемым гипертрофической пульмональной остеодистрофией[195], который возникает при вдыхании большого количества твердых абразивных частиц, а они, должно быть, вдыхали очень много, потому что на сотни миль вокруг слой пепла достигал толщины в несколько футов». Вурхис поднял комок сероватой глинистой породы и раскрошил ее мне в руку. Порошкообразная порода, но с острыми песчинками. «Гадкая штука, если приходится вдыхать, — продолжал он, — потому что очень тонкая, но к тому же довольно острая, режущая. Видимо, они приходили сюда на водопой, ища облегчения, а вместо этого в мучениях гибли. Пепел, видимо, погубил все. Похоронил под собой всю траву, покрыл каждый листок и превратил воду в негодную для питья бурую жижу. Совсем негодную». В документальной программе «Горизонт» говорилось, что наличие такого количества пепла в Небраске явилось неожиданностью. На самом же деле о громадных залежах пепла в Небраске было известно давно. На протяжении почти сотни лет его добывали для изготовления хозяйственных чистящих порошков типа «Комет» или «Аякс». Но, как ни странно, никому не приходило в голову поинтересоваться, откуда взялся весь этот пепел. «Неловко признаться, — смущенно улыбнулся Вурхис, — но я сам впервые подумал об этом, когда меня спросил об этом редактор National Geographic, и мне пришлось сознаться, что я не знаю. Никто не знал». Вурхис разослал образцы коллегам во все западные штаты с просьбой сообщить, нет ли у них чего-нибудь похожего. Несколько месяцев спустя с ним связался геолог из Геологической службы Айдахо Билл Бонничсен и рассказал, что пепел соответствует вулканическим отложениям у местечка Бруно-Джарбридж на юго-западе Айдахо. Явлением, которое убило животных на равнинах Небраски, было извержение вулкана невиданных ранее масштабов — такое, что покрыло трехметровым слоем пепла территорию на расстоянии за 1600 км от него, на западе Небраски. Оказалось, что под западной частью Соединенных Штатов находился гигантский магматический котел, колоссальный вулканический очаг, катастрофически извергавшийся примерно каждые шестьсот тысяч лет. Последнее такое извержение было чуть больше шестисот тысяч лет назад. Очаг остается на месте. Сегодня мы называем его Йеллоустонским национальным парком. Мы поразительно мало знаем, что происходит у нас под ногами. Страшно подумать, что Форд стал производить автомобили, а Нобелевский комитет стал присуждать премии задолго до того, как мы узнали, что у Земли есть ядро. Да и идея, что материки плавают по поверхности, как листья кувшинок, стала общепризнанной меньше чем поколение назад. «Как ни странно, — писал Ричард Фейнман, — мы разбираемся в распределении вещества внутри Солнца куда лучше, чем во внутреннем строении Земли». Расстояние от поверхности до центра Земли равно 6370 км, что не так уж много. Подсчитано, что если выкопать колодец до центра и бросить в него кирпич, то он долетит до дна всего за 45 минут (хотя в этой точке он будет невесомым, поскольку вся тяжесть Земли будет не внизу, а наверху и вокруг[196]). Наши попытки продвинуться в направлении центра были поистине скромными. В Южной Африке один или два золотых рудника достигают глубины более 3 км, а глубина большинства шахт и рудников на Земле не превышает 400 м. Если бы планета была яблоком, мы бы даже не проткнули бы кожуру. На самом деле мы бы даже не приблизились к этому. Чуть меньше ста лет назад самые осведомленные ученые умы знали о недрах Земли не намного больше шахтера — а именно, что на какое-то расстояние вы углубляетесь в грунт, а затем упираетесь в твердую породу, и на этом все. Затем в 1906 году ирландский геолог Р. Д. Олдхэм, изучая сейсмограммы землетрясения в Гватемале, заметил, что отдельные ударные волны проникали до определенной точки глубоко в Землю, а потом отражались под углом, словно встречали какое-то препятствие. Отсюда он сделал вывод, что Земля имеет ядро. Тремя годами позже хорватский сейсмолог Андрей Мохоровичич изучал диаграммы землетрясения в Загребе и отметил подобное необычное отклонение, но на меньшей глубине. Он открыл границу между корой и слоем непосредственно под ней, мантией. С тех пор эта зона известна как поверхность Мохоровичича, или, для краткости, Мохо. Так мы начинали получать смутное представление о слоистом внутреннем строении Земли — правда, действительно весьма смутное. Только в 1936 году датчанка Инге Леманн, изучая сейсмограммы землетрясений в Новой Зеландии, обнаружила, что существует два ядра: внутреннее, которое мы ныне считаем твердым, и внешнее (то самое, что обнаружил Олдхэм), которое считается жидким и, как полагают, является очагом магнетизма. Как раз примерно в то время, когда Леманн, изучая сейсмические волны при землетрясениях, уточняла наши начальные представления о внутреннем строении Земли, двое геологов из компании «Калтекс» в Калифорнии разрабатывали способ сравнивать одно землетрясение с другим. Это были Чарлз Рихтер и Бено Гутенберг, хотя по причинам, не имеющим никакого отношения к справедливости, шкала почти сразу стала известна по имени одного Рихтера. (Рихтер тоже здесь был ни при чем. Будучи скромным человеком, он никогда не называл шкалу своим именем и всегда ссылался на нее как на «шкалу магнитуд».) Не связанные с естественными науками люди в большинстве своем имеют неверное представление о шкале Рихтера, хотя теперь посетители, возможно, чуть реже просят показать знаменитую шкалу Рихтера, полагая ее чем-то вроде линейки. Разумеется, шкала — это скорее понятие, чем вещь, произвольная мера колебаний Земли, основанная на измерениях, сделанных на поверхности. Она возрастает экспоненциально, так что землетрясение магнитудой 7,3 в 32 раза мощнее, чем землетрясение магнитудой 6,3, и в 1000 раз мощнее, чем 5,3[197]. По крайней мере, теоретически у землетрясений не бывает верхней границы, и уж коли так, то и нижней. Шкала просто служит мерой силы, но ничего не говорит о разрушениях. Землетрясение магнитудой 7 глубоко в мантии — скажем, на глубине 650 км, — возможно, не причинит никаких разрушений на поверхности, тогда как значительно более слабое, но на глубине 6–7 км, может вызвать огромные разрушения. Многое также зависит от характера залегания пород, продолжительности землетрясений, частоты и серьезности толчков, следующих за главным толчком, и от физического состояния пораженной землетрясением территории. Из всего этого вытекает, что самыми страшными не обязательно бывают самые сильные землетрясения, хотя сила, несомненно, значит очень много. Крупнейшим землетрясением (в зависимости от источника, на который полагаются) после создания шкалы было или землетрясение, случившееся в марте 1964 года в заливе Принца Вильяма на Аляске, которое оценивали магнитудой 9,2, или то, что произошло в 1960 году в Тихом океане у побережья Чили, которому первоначально приписали магнитуду 8,6 балла, но позднее некоторые авторитетные органы (включая Геологическую службу США) пересмотрели ее в сторону повышения до поистине импозантной цифры в 9,5. Как вы теперь понимаете, измерение землетрясений не всегда отличается точностью, особенно когда приходится оценивать данные, полученные из отдаленных мест. Во всяком случае, оба землетрясения были чудовищными. Землетрясение 1960 года не только произвело обширные разрушения вдоль всего южно-американского побережья, но и вызвало гигантское цунами, которое прокатилось почти 10 тысяч миль по Тихому океану и смыло значительную часть городка Хило на Гавайских островах, где было уничтожено пятьсот зданий и погибло 60 человек. Еще больше жертв унесли волны в Японии и на Филиппинах. Однако что касается в чистом виде разрушений, то, пожалуй, самым значительным землетрясением за весь период письменной истории было землетрясение, поразившее — и, по существу, полностью разрушившее — Лиссабон, столицу Португалии, в день Всех Святых (1 ноября) 1755 года. Как раз перед 10 часами утра город потряс косой удар, по нынешним оценкам, силой 9,0 баллов; дикая тряска продолжалась целых 7 минут. Сила толчков была такова, что вода отхлынула из порта и вернулась волной высотой более 15 метров, еще больше усугубив разрушения. Когда наконец тряска прекратилась, оставшиеся в живых получили всего три минуты покоя, после чего последовал второй удар, лишь чуть слабее предыдущего. В итоге погибло 60 тысяч человек, и практически все здания на много миль вокруг превратились в руины. Для сравнения: землетрясение в Сан-Франциско 1906 года, оценивающееся по шкале Рихтера в 7,8 балла, продолжалось менее 30 секунд. Землетрясения — явления довольно обычные. Ежедневно где-нибудь в мире происходит пара землетрясений силой 2 балла и больше — достаточных, чтобы находящиеся поблизости получили приличную встряску[198]. Хотя землетрясения имеют тенденцию группироваться в определенных местах — особенно в поясе, окружающем Тихий океан, — они случаются почти всюду. В Соединенных Штатах только Флорида, восток Техаса да северная часть Среднего Запада — пока что — почти полностью от них избавлены. В Новой Англии за последние 200 лет было 2 землетрясения силой 6,0 баллов или больше. В апреле 2002 года этот район пережил землетрясение силой 5,1 балла близ озера Чемплейн на границе штатов Нью-Йорк и Вермонт, причинившее множество разрушений местного характера, когда (могу засвидетельствовать) даже в Нью-Гемпшире картины падали со стен, а дети с кроваток. Самыми распространенными типами землетрясений являются те, что возникают в местах встречи двух тектонических плит, как в Калифорнии вдоль разлома Сан-Андреас. По мере того как плиты напирают друг на друга, давление нарастает, пока одна или другая не уступит. Вообще говоря, чем дольше интервал между землетрясениями, тем сильнее сдерживаемое давление и тем больше вероятность, что встряска будет действительно сильной. Особая причина для беспокойства есть у Токио, про который Билл Макгуайр[199], специалист по стихийным бедствиям из Лондонского университетского колледжа, говорит, что это «город, ожидающий гибели» (слоган, который вряд ли найдешь на туристских листовках). Токио стоит на стыке трех тектонических плит, к тому же в стране, уже известной своей сейсмической нестабильностью. Как помните, в 1995 году город Кобэ, находящийся почти в 500 км к востоку от столицы, поразило землетрясение силой 7,2 балла. Тогда погибло 6394 человека, а ущерб оценивался в 99 млрд долларов. Но это ничто — ну, или, скажем, относительно немного — в сравнении с тем, что может ожидать Токио. Токио уже пострадал от одного из самых разрушительных землетрясений нашего времени. 1 сентября 1923 года как раз перед полуднем город подвергся землетрясению, более чем в 10 раз превосходившему землетрясение в Кобэ. Погибло 200 тысяч человек. С тех пор в Токио наблюдается смешанное со страхом спокойствие; а напряжение под поверхностью уже 80 лет нарастает. В конечном счете оно обязательно вырвется наружу. В 1923 году население Токио составляло около 3 миллионов человек. Сегодня оно приближается к тридцати миллионам. Никто не собирается строить прогнозы, сколько людей может погибнуть, но оценка возможных экономических потерь достигает 7 трлн долларов. Еще более тревожные сигналы, из-за своей необъяснимости и непредсказуемости, подают редкие толчки, известные как внутриплитные землетрясения. Они происходят далеко от краев плит, что делает их совершенно непрогнозируемыми. Поскольку они зарождаются на куда более значительной глубине, им свойственно распространяться на более обширные области. Наиболее известной из когда-либо поразивших территорию Соединенных Штатов была серия из трех таких толчков в Нью-Мадриде, штат Миссури, зимой 1811–1812 годов. Неожиданности начались сразу после полуночи 16 декабря, когда людей сначала разбудил рев напуганного до смерти скота (беспокойное поведение животных перед землетрясениями — это не бабушкины сказки, а установленный, хотя и непонятный факт), а затем из недр земли раздался могучий разрывающий душу гул. Выбегавшие из домов обитатели городка увидели, как земля перекатывается метровыми волнами, обнажая трещины в несколько метров глубиной. Воздух наполнился едким запахом серы. Тряска продолжалась 4 минуты, вызывая обычные для таких случаев разрушения. Среди свидетелей был случайно оказавшийся там художник Джон Джеймс Одюбон[200]. Землетрясение распространялось вширь так активно, что разрушило дымовые трубы в Цинциннати на расстоянии 600 км, и, согласно по крайней мере одному описанию, «повредило суда в гаванях восточного побережья и… даже повалило строительные леса вокруг Капитолия в Вашингтоне, округ Колумбия». 23 января и 4 февраля последовали дальнейшие землетрясения сравнимой силы. С тех пор в Нью-Мадриде спокойно — неудивительно, потому что такого рода эпизоды никогда не повторяются в одном и том же месте. Насколько известно, такой удар так же непредсказуем, как удар молнии. Следующий может произойти под Чикаго, или под Парижем, или Киншасой. Никто не может даже предположить, что служит причиной этих огромных разрывов в середине плит? Что-то происходящее в недрах Земли. Больше об этом мы ничего не знаем. К 1960-м годам ученые были изрядно разочарованы собственным невежеством относительно устройства земных недр, чтобы попытаться что-то предпринять. В частности, возникла мысль пробурить со дна океана (земная кора на материках слишком толстая) скважину до поверхности Мохо и достать кусочек мантии Земли, чтобы на досуге не спеша его изучить. Думали, что если разобраться в свойствах пород в недрах Земли, можно приблизиться к пониманию их взаимодействия и тем самым, возможно, научиться предсказывать землетрясения и другие нежелательные явления. Проект почти сразу окрестили Mohole[201], и он потерпел практически полный провал. План состоял в том, чтобы опустить бур на глубину 4 тысячи метров в Тихом океане у побережья Мексики и пробурить 5 тысяч метров породы в сравнительно тонкой земной коре. Бурить с корабля в открытом море, по словам одного океанографа, «все равно что спагетиной пытаться просверлить дырку в тротуаре Нью-Йорка с высоты Эмпайр стейт билдинг». Каждая попытка заканчивалась неудачей. Самая большая глубина, которую прошел бур, составила всего 180 метров. Так что Mohole стали называть No Hole[202]. В 1966 году из-за непрерывно возрастающих расходов и отсутствия результатов у Конгресса лопнуло терпение и он закрыл проект. Четыре года спустя попытать счастья на суше решили советские ученые. Они выбрали место на Кольском полуострове недалеко от финской границы и принялись за работу, надеясь пробурить скважину на глубину 15 км. Работа оказалась тяжелее, чем ожидалось, но советские ученые отличались похвальным упорством. Когда наконец через 12 лет они оставили это занятие, было пробурено 12 262 метра. Принимая во внимание, что земная кора составляет лишь около 0,3 % объема планеты и что Кольская скважина не прошла даже трети толщины коры, мы вряд ли можем заявлять о покорении недр. Но даже при этих скромных размерах скважины почти все их открытия удивили исследователей. Изучение сейсмических волн привело ученых к прогнозу, причем довольно уверенному, что до глубины 4700 метров они встретят осадочные породы, далее последует 2300 метров гранита, а ниже пойдет базальт. Фактически слой осадочных пород был наполовину глубже ожидавшегося, а базальтового слоя совсем не обнаружили. Более того, там, внизу, оказалось значительно жарче, чем ожидалось; на глубине 10 тысяч метров температура достигала 180 градусов по Цельсию — почти в два раза выше предсказывавшейся. Но самым удивительным было то, что порода на глубине была пропитана водой — это вообще считалось невероятным. Поскольку мы не можем заглянуть внутрь Земли, чтобы узнать, что там находится, приходится прибегать к другим способам, большей частью изучать свойства волн, проходящих через недра. Кое-что можно узнать о мантии по образованиям, называемым кимберлитовыми трубками, в которых формируются алмазы. Происходит следующее: глубоко в недрах Земли случается взрыв, который со сверхзвуковой скоростью выбрасывает на поверхность, по существу, заряд магмы. Явление это абсолютно непредсказуемое. Кимберлитовая трубка может вырваться наружу у вас во дворе, когда вы заняты чтением этой книги. Поскольку они вырываются с такой большой глубины — до 200 км, — кимберлитовые трубки выносят на поверхность такие вещества, которые обычно не найдешь на поверхности или вблизи нее: породу, называемую перидотитом, кристаллы оливина и — лишь изредка, в одной трубке из ста, — алмазы. С кимберлитовыми выбросами выходит много углерода, но большая его часть испаряется или превращается в графит. Только время от времени необходимая масса его выбрасывается в сочетании с нужной скоростью и временем остывания, что приводит к образованию алмазов. Именно такие трубки превратили Иоганнесбург в богатейший мировой алмазный центр. Однако могут существовать другие, еще более крупные трубки, о которых мы не знаем. Геологам известно, что где-то по соседству с северо-восточной частью Индианы имеются свидетельства существования трубки или группы трубок, которые могут быть поистине колоссальными. В разбросанных по всему району местах находили алмазы до 20 карат и даже больше. Но никто не обнаружил их источник. Как отмечает Джон Макфи[203], он может быть похоронен под ледниковыми отложениями, наподобие мэнсонского кратера в Айове, или находится под Великими озерами. Итак, что мы знаем о недрах Земли? Очень мало. В целом ученые сходятся во мнении, что мир под нами состоит из четырех слоев — твердой внешней коры, мантии из горячей вязкой породы, жидкого внешнего ядра и твердого внутреннего ядра*. --- * (Для тех, кто жаждет более подробно представить картину земных глубин, приводим приблизительные размеры разных слоев. От 0 до 40 км — земная кора. От 40 до 400 км — верхняя мантия. От 400 до 650 км — промежуточная зона между верхней и нижней мантиями. От 650 до 2700 км — нижняя мантия. От 2700 до 2890 км — слой «D». От 2890 до 5150 км — внешнее ядро, а от 5150 до 6370 км — внутреннее ядро.) Известно, что на поверхности преобладают силикаты; они относительно легкие и их недостаточно, чтобы обеспечить наблюдаемую среднюю плотность Земли в целом. Следовательно, внутри должно находиться более тяжелое вещество. Известно, что для образования нашего магнитного поля где-то внутри должен существовать плотный пояс металлических элементов в жидком состоянии. Это то, что является общепризнанным. Но почти все сверх того — как взаимодействуют слои, что определяет их поведение, как они поведут себя в будущем — представляется по крайней мере неопределенным, а чаще крайне неопределенным. Даже видимая нами часть земного шара — кора, и та является предметом довольно громких споров. Почти во всех трудах по геологии говорится, что земная кора достигает от 5 до 10 км под океанами, около 40 км под материками и 65–95 км под крупными горными цепями, но в рамках этих обобщенных данных наблюдается множество озадачивающих отклонений. Кора под горами Сьерра-Невады, например, имеет толщину всего 30–40 км, и никто не знает почему. По всем законам геофизики Сьерра-Невада должна опускаться, словно уходить в зыбучий песок. (Некоторые считают, что, возможно, так оно и есть.) Как и когда Земля обрела свою кору — вопрос, разделяющий геологов на два больших лагеря: на тех, кто считает, что это произошло внезапно в начале истории Земли, и тех, кто считает, что это происходило постепенно и несколько позднее. Теорию раннего внезапного возникновения в начале 1960-х годов выдвинул Ричард Армстронг из Йельского университета, посвятивший остаток своей научной деятельности борьбе с теми, кто не был с ним согласен. Он умер от рака в 1991 году, но незадолго до смерти «разразился бранью в адрес своих критиков на страницах австралийского геологического журнала, обвинив их в увековечивании вымыслов», писал о нем журнал Earth («Земля») в 1998 году. «Он умер озлобленным», — рассказывал один из его коллег. Кора и часть наружной мантии вместе называются литосферой (от греческого «lithos», означающего «камень»), которая, в свою очередь, плавает на слое более мягкой породы, называемом астеносферой (от греческих слов, означающих «лишенный силы»). Но подобные термины никогда полностью не отвечают смыслу. Например, говорить, что литосфера плавает на поверхности астеносферы, — значит подразумевать определенную степень плавучести, что не совсем правильно. Подобным же образом неправильно представлять горные породы текучими, наподобие жидкостей на поверхности. Горные породы являются текучими, но лишь в том смысле, в каком текуче стекло. Этого, может быть, не видно глазом, но все стекло на Земле под неослабным влиянием силы тяжести стекает книзу. Выньте из рамы очень старое стекло в окне европейского собора, и оно окажется заметно толще внизу, чем вверху. Вот о такой «текучести» мы ведем речь. Часовая стрелка движется в десять тысяч раз быстрее «текучих» пород мантии. Движения происходят не только по горизонтали, как перемещаются земные плиты по поверхности, но также вверх и вниз, как поднимаются и опускаются горные породы в вихревом процессе, известном как конвекция. Конвекцию как процесс впервые ввел в оборот эксцентричный граф фон Румфорд в конце восемнадцатого века. Шестьдесят лет спустя английский приходской священник Осмонд Фишер высказал предположение, что содержимое земных недр вполне может быть достаточно текучим, чтобы перемещаться. Но прошло очень много времени, прежде чем его идея обрела поддержку. Примерно в 1970 году геофизики испытали изрядное потрясение, осознав, что там, внутри, происходят бурные, беспорядочные процессы. Как пишет в своей книге «Нагая Земля: Новая геофизика» Шавна Фогель:[204] «Было похоже на то, будто ученые десятки лет изучали земную атмосферу — тропосферу, стратосферу и так далее, — а потом вдруг узнали о ветре». С тех пор не утихают споры вокруг того, какой глубины достигает процесс конвекции. Одни говорят, что он начинается на глубине 650 км, другие — глубже 3 тысяч км. Проблема, как заметил Джеймс Трефил, заключается в том, что «имеются две группы данных из двух разных дисциплин, которые невозможно примирить». Геохимики говорят, что некоторые элементы не могут попасть на поверхность планеты из верхней мантии, а должны подняться из более глубоких недр Земли. Поэтому вещества верхней и нижней мантий должны, по крайней мере, периодически смешиваться. Сейсмологи же говорят, что этот тезис не находит подтверждений. Итак, можно лишь утверждать, что, двигаясь к центру Земли, в какой-то не совсем определенный момент мы покидаем астеносферу и погружаемся в чистую мантию. Если учесть, что мантия составляет 82 % объема Земли и 65 % ее массы, она не удостаивается излишнего внимания, главным образом потому, что интерес ученых, да и вообще читателей лежит либо гораздо глубже (как в случае с магнетизмом), либо ближе к поверхности (землетрясения). Известно, что до глубины примерно 150 км в составе мантии преобладает вид горной породы, известной как перидотит, но чем заполнены остальные 2650 км, точно не известно. Согласно сообщению в журнале Nature, не похоже, чтобы это был перидотит. Ничего больше нам не известно[205]. Ниже мантии находятся два ядра — твердое внутреннее и жидкое внешнее. Не приходится и говорить, что наши представления о природе этих ядер носят косвенный характер, однако ученые способны сделать некоторые обоснованные предположения. Им известно, что давление в центре Земли весьма высоко — примерно в три с лишним миллиона раз больше, чем на поверхности, — достаточно, чтобы сделать любую породу твердой. Из истории Земли (а также по косвенным признакам) известно, что внутреннее ядро очень хорошо держит тепло. Хотя это лишь чуть более чем предположение, считается, что за четыре с лишним миллиарда лет температура ядра упала не больше чем на 110 градусов Цельсия. Никто точно не знает, насколько горячим является ядро Земли, но оценки колеблются от 4000 до более 7000 градусов Цельсия — это почти так же горячо, как на поверхности Солнца. Внешнее ядро во многих отношениях изучено еще меньше, хотя все сходятся во мнении, что оно жидкое и что там находится источник магнетизма. В 1949 году Э. С. Буллард из Кембриджского университета выдвинул теорию, согласно которой эта жидкая часть земного ядра вращается таким образом, что, по существу, превращает его в электродвигатель, создающий магнитное поле Земли. Предполагается, что конвекционные потоки жидкости внутри Земли создают эффект наподобие тока в проводах. Что именно происходит — неизвестно, но довольно определенно полагают, что это связано с вращением ядра и с тем фактом, что оно жидкое[206]. Тела, не имеющие жидкого ядра, например Луна и Марс, магнетизмом не обладают. Известно, что напряженность магнитного поля Земли время от времени меняется: в эпоху динозавров она была в 3 раза выше, чем теперь. Также известно, что в среднем примерно каждые 500 тысяч лет оно меняет полярность, хотя за этим средним скрывается чудовищная степень непредсказуемости. Последняя перемена имела место около 750 тысяч лет назад. Иногда полярность остается неизменной миллионы лет — похоже, самый продолжительный промежуток составлял 37 миллионов лет, — а в другое время полярность менялась всего через 20 тысяч лет. Всего за последние 100 миллионов лет она менялась около 200 раз, и у нас фактически нет никакого представления почему. Факт этот назван «самым большим остающимся без ответа вопросом в геофизической науке». Возможно, как раз в наши дни мы переживаем смену полярности. Магнитное поле только за последнее столетие ослабло примерно на шесть процентов. Всякое ослабление магнетизма, скорее всего, плохая новость, потому что магнетизм кроме крепления записок к холодильникам и надежной работы компасов играет важнейшую роль в поддержании нашей жизни. Во Вселенной полно опасных космических лучей, которые, не будь магнитной защиты, пронзали бы наши тела, превращая большинство наших ДНК в негодные лоскутья. Когда действует магнитное поле, эти лучи надежно отгоняются от поверхности Земли и собираются в стадо в двух зонах околоземного пространства, названных поясами Ван Аллена. Они также взаимодействуют с частицами в верхних слоях атмосферы, создавая чарующие световые завесы, известные как полярные сияния[207]. Наша неосведомленность в значительной мере объясняется тем, что ученые традиционно мало заботились о согласованности исследований того, что происходит на поверхности Земли и в ее недрах. Как пишет Шавна Фогель: «Геологи и геофизики редко посещают одни и те же конференции или работают над общими проблемами». Пожалуй, ничто лучше не свидетельствует о нашем неадекватном понимании динамики происходящих в недрах Земли процессов, как тот факт, что, вырываясь наружу, они застают нас врасплох, и трудно припомнить более подходящий пример ограниченности нашего понимания, чем извержение вулкана Сент-Хеленс в штате Вашингтон в 1980 году. К тому времени 48 штатов не видели извержений вулканов больше 65 лет. Поэтому большинство вулканологов, находившихся на государственной службе, призванных следить за Сент-Хеленсом и предсказывать ее поведение, были знакомы только с действующими вулканами на Гавайях, а они, как оказалось, были совсем другого типа. Угрожающий гул появился на Сент-Хеленсе 20 марта. В течение недели он стал извергать магму до 100 раз за день, хотя и в умеренных количествах, и непрерывно сотрясался землетрясениями. Людей эвакуировали на считавшееся безопасным расстояние в 13 км. По мере нарастания подземного гула Сент-Хеленс становился достопримечательностью для туристов со всего мира. В газетах ежедневно публиковались советы о лучших местах для обзора. К вершине на вертолетах то и дело летали телевизионные съемочные группы, встречались даже карабкавшиеся по склонам люди. Был день, когда над вершиной кружили более 70 вертолетов и легких самолетов. Однако шли дни, а рокот не перерастал во что-нибудь более эффектное, люди теряли терпение, все пришли к выводу, что вулкан в конечном счете не взорвется. 19 апреля северный склон вулкана начал заметно вздуваться. Удивительно, что никто из занимавших ответственное положение не увидел в этом явной угрозы бокового взрыва. Сейсмологи в своих заключениях твердо опирались на поведение гавайских вулканов, у которых не бывает боковых взрывов. Чуть ли не единственным лицом, считавшим, что может произойти нечто действительно опасное, был профессор геологии Джек Хайд из местного колледжа в Такома. Он указывал, что у Сент-Хеленса не было открытого выходного отверстия, как у гавайских вулканов, так что любое нараставшее внутри давление обязательно должно было вырваться наружу бурно и, возможно, катастрофически. Однако Хайд не состоял в официально созданной группе, и на его замечания мало кто обратил внимание. Все мы знаем, что произошло потом. В 8.32 утра в воскресенье, 18 мая, северный склон вулкана рухнул, образовав чудовищную лавину грязи и камней, мчавшуюся по склону со скоростью почти 250 км/ч. Это был самый большой оползень в человеческой истории, несший в себе достаточно материала, чтобы целиком похоронить Манхэттен на глубине 120 метров. Минутой позже склон тяжело осел, и Сент-Хеленс взорвался с силой 500 атомных бомб, сброшенных на Хиросиму, выбрасывая смертоносное горячее облако со скоростью до 1050 км/ч — понятно, никому из находившихся поблизости невозможно было его обогнать. Многие люди, которые считали, что находятся в безопасных местах, оказались застигнутыми врасплох, часто даже далеко за пределами видимости вулкана. Погибло 57 человек. Двадцать три тела так и не нашли. Жертв было бы намного больше, если бы взрыв произошел не в воскресенье. В рабочие дни в смертельно опасной зоне находилось бы много лесорубов. Некоторые люди погибли в 30 км от вулкана. Больше всех в тот день повезло аспиранту Гарри Гликену. Ему был поручен наблюдательный пост в 9 км от горы, но на 18 мая его вызвали на собеседование в связи с назначением на работу, так что накануне извержения он уехал в Калифорнию. Его место занял Дэвид Джонсон. Джонсон первым сообщил об извержении вулкана и спустя несколько мгновений погиб. Его тело так и не нашли. Везение Гликена было, увы, недолговечным. 11 лет спустя он оказался в числе 43 ученых и журналистов, роковым образом попавших под смертельный выброс раскаленного пепла, газов и расплавленной породы — известный как пирокластический поток — на вулкане Унзен в Японии. Там ошибки привели к еще одному неверному прогнозу извержения вулкана. Вулканологи могут быть, а могут и не быть самыми плохими предсказателями среди ученых, но они, несомненно, хуже всех в мире понимают, насколько плохими могут быть их предсказания[208]. Менее чем через 2 года после несчастья на горе Унзен еще одна группа исследователей вулканов во главе со Стэнли Уильямсом из Аризонского университета спустилась через край кратера действующего вулкана Галерас в Колумбии. Несмотря на смертельные случаи в предыдущие годы, только на двух из шестнадцати участников группы Уильямса были каски и другое защитное снаряжение. Внезапно началось извержение, погибли 6 ученых и 3 присоединившихся к ним туристов и серьезно пострадали еще несколько участников, в том числе сам Уильямс. В своей удивительно несамокритичной книге, озаглавленной «Уцелевшие на Галерас», Уильямс писал, что «только удивленно качал головой», узнав впоследствии, что его коллеги-вулканологи поговаривали, что он якобы упустил из виду или игнорировал важные сейсмические сигналы и действовал опрометчиво. «Легко язвить задним числом, применяя современные знания к событиям 1993 года», — писал он. Он считал, что самой большой его виной был неудачный выбор времени, когда Галерас, «как это свойственно силам природы, вел себя своенравно. Я был обманут и за это беру на себя ответственность. Но я не чувствую за собой вины за гибель своих коллег. Вины здесь нет. Было только извержение». Но вернемся в Вашингтон. Вулкан Сент-Хеленс потерял 400 метров вершины, было уничтожено 600 км2 лесов. Унесенных взрывом лесоматериалов хватило бы для строительства 150 тысяч домов (по некоторым данным, 300 тысяч). Ущерб оценивался в 2,7 миллиарда долларов. Менее чем за 10 минут гигантский столб дыма и пепла поднялся на высоту 18 тысяч метров. С летевшего в 48 км самолета сообщили, что его забросало камнями. Через полтора часа после взрыва пепел посыпался на Якиму штат Вашингтон, городок с населением 50 тысяч жителей примерно в 130 км от вулкана. Как и следовало ожидать, день превратился в ночь, пепел проникал всюду, забивал двигатели, генераторы и электропереключатели, он душил пешеходов, засорял очистительные системы и вообще привел к полной остановке жизни. Аэропорт и магистрали, ведущие в город, перестали функционировать. Заметим, что все это происходило с подветренной стороны от вулкана, угрожающе грохотавшего на протяжении 2 месяцев. Тем не менее в Якиме не было принято никаких чрезвычайных мер. Две городские аварийные радиосистемы, которые полагалось включить в критический момент, не вышли в эфир, потому что «дежуривший утром в воскресенье персонал не знал, как ими пользоваться». Три дня Якима была парализована и отрезана от мира, аэропорт закрыт, подъездные пути непроходимы. В результате извержения вулкана Сент-Хеленс на город выпало чуть более 1,5 сантиметра пепла. Пожалуйста, держите это в памяти, когда мы станем строить предположения о том, что будет в случае извержения в Йеллоустоне. 15 Опасная красота В 1960-е годы, изучая вулканическую историю Йеллоустонского национального парка, Боб Кристиансен из Геологической службы Соединенных Штатов ломал голову над тем, что, как ни странно, никого раньше не беспокоило: он никак не мог найти в парке вулкан. Давно было известно, что Йеллоустон имеет вулканическое происхождение — этим объяснялись все его гейзеры и другие горячие источники, — а одна из особенностей вулканов состоит в том, что они, как правило, бросаются в глаза. Но Кристиансен никак не мог отыскать йеллоустонский вулкан. Он, в частности, не мог найти структуру, известную как кальдера. Большинство, думая о вулканах, представляют классические конусообразные очертания Фудзи или Килиманджаро, которые возникают, когда извергающаяся магма образует симметричную насыпь. Они могут формироваться необыкновенно быстро. В 1943 году в Парикутине, в Мексике, фермер был напуган, увидев, как из его клочка земли поднимается дым. За неделю он стал озадаченным владельцем конуса в 152 метра высотой. За два года он достиг высоты почти 430 метров и более 800 метров в диаметре. Всего на Земле таких мозолящих глаза вулканов около 10 тысяч, все, за исключением нескольких сотен, потухшие. Но существуют вулканы другого, менее известного типа, которые не приводят к образованию гор. Эти вулканы образуются в результате мощных взрывов и вырываются наружу одним сокрушительным ударом, оставляя после себя огромный провал — кальдеру (от латинского слова, означающего «котел»)[209]. Йеллоустон явно принадлежал к этому второму типу, но Кристиансен нигде не мог найти кальдеру. Так совпало, что в то же самое время НАСА, решив испытать новые фотокамеры, сделало снимки Йеллоустона, копии которых один заботливый сотрудник переслал руководству парка, подумав, что они прекрасно впишутся в одну из экспозиций в павильоне для посетителей. Увидев снимки, Кристиансен сразу понял, почему он не нашел кальдеру: весь парк — 9 000 км2 — по существу, и являлся кальдерой. Извержение оставило провал почти 65 км в поперечнике — слишком большой, чтобы различить его, находясь на поверхности земли. Когда-то в прошлом Йеллоустон должен был взорваться с силой, намного превосходящей все ведомое человеческому роду. Йеллоустон оказался сверхвулканом. Он расположился над огромным горячим пятном на нашей планете — очагом расплавленной породы, который берет начало по крайней мере в 200 км в глубине Земли и почти достигает поверхности, образуя так называемый суперплюм[210]. Именно тепло из этого горячего пятна питает все йеллоустонские газовые выходы, гейзеры, горячие источники и пузырящиеся грязевые котлы. Под поверхностью находится заполненная магмой камера, имеющая в разрезе эллиптическую форму с горизонтальной осью около 72 км — приблизительно тех же размеров, что и сам парк, — и вертикальной осью 13 км. Представьте себе груду тротила величиной с английское графство и поднимающуюся на 13 км в небо — до самых высоких перистых облаков, и вы получите некоторое представление, по поверхности чего бродят посетители Йеллоустона. Давление в этом магматическом очаге на перекрывающую его земную кору приподняло Йеллоустон и окружающую территорию примерно на полкилометра по сравнению с тем, где им следовало бы находиться. Если он рванет, катаклизм далеко превзойдет любые фантазии. По словам профессора Лондонского университетского колледжа Билла Макгуайра, во время извержения «вы не сможете подойти к нему ближе, чем на тысячу километров». А дальнейшие последствия будут еще хуже. Суперплюмы, подобные тому, на котором покоится Йеллоустон, чем-то похожи на бокалы для мартини — узкие снизу, но расширяющиеся у поверхности, они образуют обширные котлы нестабильной магмы. Некоторые такие котлы могут достигать 1900 км в поперечнике. Согласно существующим предположениям, они не всегда извергаются взрывообразно, а иногда изливаются широким непрерывным потоком, покрывая окрестности расплавленной породой, как это было при образовании деканских траппов в Индии 65 миллионов лет назад. Они распространились на площадь свыше 500 тысяч км2 и, возможно, способствовали гибели динозавров (во всяком случае, не помогли им выжить) вследствие выделения ядовитых газов. Суперплюмы, возможно, являются и причиной раскалывания материков. Подобные плюмы не так уж редки. В данный момент на Земле насчитывается около тридцати активных плюмов, и они были причиной образования по всему миру многих широко известных отдельных островов и их цепей — Исландии, Гавайского, Азорского, Канарского и Галапагосского архипелагов, маленького острова Питкерна посреди южной части Тихого океана и множества других, но, кроме Йеллоустона, все они океанические. Никто не имеет ни малейшего представления, как йеллоустонский канал нашел выход в материковой плите. Определенно можно сказать только о двух вещах: что земная кора в Йеллоустоне тонкая и что недра под ней горячие. Но то ли кора тонкая из-за горячего пятна, то ли горячее пятно оказалась там из-за того, что кора тонкая — это остается предметом жарких дискуссий. Материковый характер коры создает совершенно иные предпосылки для извержения. Тогда как другие супервулканы имеют свойство изливаться равномерно и сравнительно спокойно, Йеллоустон извергается взрывоподобно. Случается это не часто, но уж если случится, предпочтительно держаться подальше. С момента первого известного извержения 16,5 миллиона лет назад он извергался около сотни раз, но речь пойдет о трех самых последних случаях. Последнее извержение было в тысячу раз крупнее извержения вулкана Сент-Хеленс в 1980 году; предыдущее — в 280 раз сильнее, а предшествующее ему было настолько мощным, что никто точно не знает его масштабов. Оно было по меньшей мере в 2500 раз мощнее последнего извержения Сент-Хеленса, а возможно, и в 8000 раз. У нас нет сведений ни об одном сколько-нибудь сравнимом извержении. Крупнейшим событием такого рода в последнее время было извержение Кракатау в Индонезии в августе 1883 года; отзвук страшного удара многократно отдавался по всему миру в течение 9 дней, а вода всколыхнулась даже в Ла-Манше. Но если представить массу, выброшенную Кракатау, в виде мяча для игры в гольф, то выброс вещества самого крупного из йеллоустонских извержений был бы величиной с шар, за которым вы могли бы спрятаться. В этом масштабе вулканическая масса Сент-Хеленса была бы величиной с горошину[211]. Извержение, случившееся в Йеллоустоне 2 миллиона лет назад, выбросило достаточно пепла, чтобы накрыть штат Нью-Йорк 20-метровым слоем или Калифорнию слоем толщиной 6 метров. Это и был тот пепел, который образовал обнаруженное Майком Вурхисом захоронение ископаемых остатков на востоке Небраски. Извержение произошло там, где сейчас расположен штат Айдахо, но земная кора миллионы лет перемещалась над этим местом со скоростью около 2,5 см/год, так что теперь оно находится прямо под северо-западным районом Вайоминга. (Само горячее пятно остается на месте, как направленная в потолок сварочная горелка.) Извержение оставляет после себя плодородные вулканические равнины, идеальные, как давно обнаружили айдахские фермеры, для выращивания картофеля. Еще через два миллиона лет, любят шутить геологи, в Йеллоустоне будет полно картофеля фри для «Макдоналдса», а жители Биллингса в штате Монтана будут расхаживать среди гейзеров. Выпавший во время последнего йеллоустонского извержения пепел полностью или частично покрыл 19 западных штатов — почти все Соединенные Штаты к западу от Миссисипи (плюс часть Канады и Мексики). Это, имейте в виду, житница Америки, регион, где выращивается приблизительно половина зерновых всего мира. И не следует забывать, что пепел — это не снег, который, каким бы обильным он ни был, весной растает. Если бы вы захотели вновь вырастить урожай, вам пришлось бы искать место, куда вывезти весь этот пепел. На расчистку шести с половиной гектаров развалин Всемирного торгового центра в Нью-Йорке тысячам рабочих потребовалось восемь месяцев. Представьте, сколько потребуется сил, чтобы расчистить весь Канзас. Но речь идет не только о климатических последствиях. Последнее извержение супервулкана на Земле произошло в Тоба, на севере Суматры, 74 тысячи лет назад. Масштабы его точно неизвестны, но оно было чудовищным. Судя по гренландским ледникам, за извержением в Тоба последовало по крайней мере 6 лет «вулканической зимы», и одному богу известно, сколько после этого было неурожайных лет. Полагают, что оно поставило человечество на грань исчезновения, сократив население планеты до нескольких тысяч человек, не более. В таком случае это означает, что все современные жители Земли имеют весьма незначительную родословную базу, что могло бы объяснить недостаток нашего генетического разнообразия. Во всяком случае, существуют основания полагать, что следующие 20 тысяч лет общее число жителей Земли ни разу не превышало нескольких тысяч человек. Нет необходимости объяснять, что потребовалось значительное время, чтобы оправиться от единственного вулканического извержения[212]. Все эти догадки представляли чисто гипотетический интерес до 1973 года, когда произошло одно необычное явление: озеро, расположенное посередине парка, стало выходить из берегов с южной стороны, затопив прилегающий луг, а противоположный край озера таинственным образом обмелел. Геологи спешно провели съемку местности и обнаружили, что большой участок парка зловеще вспучился. Вздутием подняло один край озера, и вода стала переливаться через другой, как это бывает, когда вы поднимаете один край детской купальни. К 1984 году вся центральная часть парка — больше 100 км2 — поднялась на метр по сравнению с уровнем 1924 года, когда в парке последний раз официально производилась съемка. Затем в 1985 году центральная часть парка опустилась на 20 сантиметров. Теперь, кажется, она поднимается снова. Геологи поняли, что причиной этого явления могло послужить только одно — беспокойный магматический очаг. Йеллоустон оказался местом не древнего, а действующего вулкана. Примерно в то же время ученые смогли высчитать, что цикл йеллоустонских извержений в среднем составлял один мощный выброс каждые 600 тысяч лет. Последний был 630 тысяч лет назад. Похоже, время Йеллоустона не за горами. «Возможно, это не ощущается, но вы стоите на самом большом в мире действующем вулкане», — говорит мне геолог Йеллоустонского национального парка Пол Досс, сойдя с огромного мотоцикла «Харлей-Дэвидсон» и здороваясь со мной возле управления парка в Маммот Хот Спрингс чудесным ранним июньским утром. Коренной житель Индианы, Досс — симпатичный, спокойный, чрезвычайно внимательный мужчина, совсем не похожий на служащего Национального парка. Седеющие борода и волосы завязаны в длинную косичку. Ухо украшает скромный сапфир. Небольшое брюшко обтягивает хрустящая форма служащего парка. Досс скорее похож на джазового музыканта, нежели на государственного служащего. Вообще-то он и есть музыкант (играет на гармонике). Но он, несомненно, прекрасно знает геологию и любит свое дело. «И у меня для этого лучшее место на Земле», — говорит он, когда мы на тряском потрепанном внедорожнике с приводом 4×4 трогаемся в направлении самого знаменитого из гейзеров — Старого Служаки (Old Faitful). Досс разрешил мне в течение дня сопровождать его, дабы составить представление о работе паркового геолога. На сегодня первым его делом была вводная беседа с вновь принятыми на работу экскурсоводами. Вряд ли стоит кого-либо убеждать, что Йеллоустон — поразительно красивый уголок Земли с величавыми горами и лугами, с пасущимися бизонами, с водопадами, с озером небесно-голубого цвета и невероятно богатым растительным и животным миром. «И для геолога лучшего места не найти, — замечает Досс. — В Бертус Гэп есть горные породы, которым почти три миллиарда лет — три четверти пути до рождения Земли. А здесь минеральные источники, — добавляет он, указывая на горячие серные источники, которым дали имя Маммоту, — где можно видеть рождение горных пород. А между ними есть все, что можно представить. Я не встречал места, где геология была бы более наглядной… или более привлекательной». «Значит, вам этот край нравится?» — говорю я. «О нет, я в него влюблен, — с неподдельной убежденностью отвечает он. — Хочу сказать, я действительно люблю это место. Зимы здесь суровые, зарплата не ахти какая, но когда дела идут, это просто…» Он остановился, чтобы обратить мое внимание на виднеющийся вдали на западе просвет в горной цепи, который только что появился в поле зрения. Эти горы, сказал он, зовутся Галлатинами. «Этот просвет протянулся на 100, а то и на 110 км. Долгое время не могли понять, откуда взялся этот разрыв, и только потом Боб Кристиансен осознал, что горы в этом месте, должно быть, просто сдуло взрывом. Когда с лица земли сносится сто километров гор, начинаешь понимать, что имеешь дело с чем-то весьма могущественным. Чтобы прийти к такому заключению, Кристиансену потребовалось 6 лет». Я спросил, что стало причиной извержения в Йеллоустоне. «Не знаю. Никто не знает. Вулканы — странные штуки. Вообще-то говоря, мы в них не разбираемся. До извержения в 1944 году Везувий в Италии был активным на протяжении трехсот лет, а потом взял и замолчал. И с тех пор молчит. Некоторые вулканологи считают, что он всерьез набирает силы, а это несколько беспокоит, потому что на самом вулкане и вокруг него живут 2 миллиона людей. Но никто точно не знает». «А за какое время появятся предупреждения, если Йеллоустон задумает действовать?» Досс пожал плечами: «При последнем извержении никого рядом не было, так что никто не знает, какие могут быть предвестники. Возможно, будет масса землетрясений или где-то поднимется земля, возможно, изменится характер гейзеров и выбросов пара, но, по существу, никто этого не знает». «Выходит, он может взорваться без предупреждения?» Он задумчиво кивнул. Беда в том, пояснил он, что почти все, что могло бы служить предупреждением, в известной мере в Йеллоустоне уже имеется. «Как правило, извержениям предшествуют землетрясения, но в парке уже происходит множество землетрясений — 1260 за прошлый год. Большинство из них слишком слабые, чтобы их ощутить, но тем не менее это землетрясения». Изменения в характере извержения у гейзеров тоже могли бы служить ключом, говорит он, но и они ведут себя непредсказуемо. Одно время самым знаменитым гейзером в парке был Эксельсиор. Бывало, он регулярно эффектно выбрасывал струи высотой 100 метров, однако в 1888 году просто замолк. Потом в 1985 году заработал снова, но выбрасывал струи всего лишь на высоту 25 метров. Гейзер Пароходный в активный период является самым большим гейзером в мире, выбрасывая воду на высоту 120 метров. Но интервалы между его извержениями колебались от 4 дней до почти 50 лет. «Если бы он начал действовать сегодня, а затем на следующей неделе, мы бы все равно не узнали, как он поведет себя дальше — заработает ли через неделю или две или же через 20 лет, — говорит Досс. — Весь парк настолько изменчив, что, по существу, почти невозможно сделать какое-либо заключение, что бы здесь ни случилось». Эвакуировать Йеллоустон было бы совсем не легким делом. За год в парке бывает около 3 млн посетителей, главным образом в 3 летних месяца. Дорог в парке сравнительно мало, и они преднамеренно узкие, отчасти чтобы ограничить скорость, отчасти чтобы сохранить живописный пейзаж, а отчасти из-за рельефных ограничений. В разгар сезона, чтобы пересечь парк, вполне может потребоваться полдня и несколько часов, чтобы добраться до любого места в его пределах. «Как только люди видят животных, тут же останавливаются, — рассказывает Досс. — Показался медведь — пробка. Увидели бизона — пробка. Появился волк — пробка». Осенью 2000 года на собрании представителей Геологической службы США, администрации Национального парка и нескольких научных учреждений была основана Йеллоустонская вулканическая обсерватория для наблюдения за вулканом. Четыре такие станции уже существовали — на Гавайях, в Калифорнии, на Аляске и в штате Вашингтон — но, как ни странно, ее не было в самой большой вулканической зоне в мире. Йеллоустонская обсерватория — это скорее идея, нежели что-то материальное, — соглашение о координации усилий по изучению многообразной геологии парка. Одной из ее первых задач, по словам Досса, стало составление «программы сейсмической и вулканической опасности» — плана действий в критических случаях. «Неужели его еще нет?» — спросил я. «Нет. Боюсь, что нет. Но скоро будет». — «Не поздновато ли?» — Он улыбнулся: «Ну, скажем, не слишком рано». Когда его подготовят, три человека — Кристиансен[213] из Менло-Парка в Калифорнии, профессор Роберт Б. Смит[214] из университета штата Юта и Досс здесь в Йеллоустоне — будут оценивать степень опасности любого потенциального катаклизма и давать рекомендации директору парка. Директору же предстоит решать, надо ли эвакуировать парк. Что касается окрестностей, то никаких планов не существует. Как только вы выедете за ворота парка, вы будете предоставлены самому себе — небольшое утешение на случай серьезного взрыва в Йеллоустоне. Конечно, до наступления этого дня, возможно, пройдет не один десяток тысяч лет. Досс считает, что такой день может вообще не наступить. «То, что в прошлом существовала какая-то закономерность, еще не означает, что она остается в силе, — говорит он. — Есть основания полагать, что за рядом катастрофических извержений может последовать длительный период покоя. Возможно, именно в нем мы сейчас и находимся. Есть признаки того, что большая часть магмы в очаге сейчас остывает и кристаллизуется. При этом она выделяет летучие вещества, а для взрывного извержения требуется, наоборот, их захватывать». А тем временем в Йеллоустоне и вокруг него случается множество других опасных явлений, что ужасающе убедительно подтвердилось в ночь 17 августа 1959 года в районе озера Хебджен Лейк совсем рядом с парком. В тот день за 20 минут до полуночи Хебджен Лейк пережило катастрофическое землетрясение. Его магнитуда составила 7,5, далеко не предел для землетрясения, но оно было таким внезапным и резким, что обрушило целый склон горы. Был разгар летнего сезона, но, к счастью, в то время в Йеллоустоне пребывало не так много посетителей, как сегодня. С горы со скоростью 160 км/ч скатилось 80 млн тонн камней. Инерция была так велика, что передний край камнепада взлетел на 120 метров по склону горы на другой стороне ложбины. На его пути оказалась часть территории туристического кемпинга Рок Крик. Погибло 28 обитателей кемпинга, 19 из них навсегда остались под завалом. Катастрофа была стремительной и чрезвычайно странной. Спавшие в одной из палаток трое братьев остались целы. Соседняя палатка с их родителями бесследно исчезла. «Сильное землетрясение — в полном смысле слова — рано или поздно произойдет, — говорит Досс. — Можете положиться. Здесь проходит крупная зона разлома, в которой локализуются очаги землетрясений». Несмотря на землетрясение в Хебджен Лейк и другие известные угрозы, в Йеллоустоне до 1970-х годов не было стационарных сейсмических станций. Если бы вам надо было по достоинству оценить грандиозность и неумолимость геологических процессов, вы вполне могли бы воспользоваться примером протянувшегося южнее Йеллоустонского национального парка хребта Тетон с великолепием его горных зубцов. 9 млн лет назад Тетона не существовало. Местность вокруг Джексон Хоул была просто возвышенной, поросшей травой равниной. Но затем в земле возник 64-километровый разлом, и с тех пор приблизительно раз в 900 лет Тетон претерпевает действительно сильные землетрясения, достаточные для того, чтобы поднять горы еще на 2 метра. Именно эти неоднократные встряски на протяжении геологических эпох подняли вершины на их нынешнюю внушительную высоту в 2 тыс метров. Эти 900 лет — величина средняя… и до некоторой степени вводящая в заблуждение. Судя по книге Роберта Б. Смита и Ли Дж. Сигеля[215] «Окна внутрь Земли», описывающей геологическую историю этого региона, последнее крупное землетрясение на Тетоне было где-то между 5 и 7 тыс лет назад. Словом, Тетон — одна из наиболее созревших для землетрясения зон на планете. Значительную опасность представляют и гидротермальные извержения. Они могут произойти в любое время, почти везде и совершенно непредсказуемо. «Видите ли, по плану экскурсий мы направляем посетителей к термальному бассейну, — говорит Досс после того, как мы посмотрели извержение Старого Служаки. — Как раз это посмотреть сюда и приезжают. Известно ли вам, что гейзеров и горячих источников в одном Йеллоустоне больше, чем во всем мире?» — «Нет, я не знал». Он кивнул головой: «Их десять тысяч, и никто не знает, где может забить новый». Мы поехали к так называемому Утиному озеру, водоему шириной пару сотен метров. «Выглядит совсем безобидным, — замечает Досс. — Просто большой пруд. Но этой большой дыры здесь раньше не было. В какой-то момент за последние 15 тысяч лет здесь по-настоящему серьезно рвануло. Несколько десятков миллионов тонн почвы, горных пород и перегретой воды со сверхзвуковой скоростью вырвались наружу. Можете представить, что было бы, случись такое в парке, скажем, у Старого Служаки или одного из мест скопления экскурсантов». Он грустно взглянул на меня. «Будет ли какое-нибудь предупреждение?» — «Пожалуй, нет. Последнее значительное извержение в парке было в 1989 году у гейзера Порк Чоп («Свиная Отбивная»). Оно оставило кратер шириной примерно пять метров — по любым меркам не слишком большой, но вам этого вполне хватило бы, окажись вы там в это время. К счастью, там никого не было, так что никто не пострадал, но все произошло без предупреждения. В очень далеком прошлом бывали извержения, оставлявшие отверстия в милю шириной. И никто не может сказать, где и когда это случится снова. Остается только надеяться, что тебя там в этот момент не окажется». Опасность представляют и камнепады. Большой обвал был в Гардинерском каньоне в 1999 году, но, к счастью, и здесь никто не пострадал. Ближе к вечеру мы с Доссом остановились у скалы, нависшей над дорогой с оживленным движением. Были отчетливо видны трещины. «Может рухнуть в любой момент», — задумчиво заметил Досс. — «Шутите», — сказал я. Не было минуты, чтобы под ней не проезжало пары автомашин, самым буквальным образом набитых веселыми туристами. «Ну, вероятность невелика, — добавил он. — Я же говорю «может». С таким же успехом она может оставаться на месте десятки лет. Это ни о чем не говорит. Остается принимать как должное, что бывать здесь опасно. Только и всего». Когда мы шли к машине, чтобы вернуться в Маммот Хот Спрингс, Досс продолжил: «Дело в том, что большую часть времени ничего не случается. Камни не падают. Землетрясения не происходят. Новых неожиданных выбросов нет. При всей этой неустойчивости большей частью здесь восхитительно и поразительно спокойно». — «Как и на самой Земле», — заметил я. «Вот именно», — согласился он. Опасности в Йеллоустоне в равной мере подстерегают и служащих парка. Досс был свидетелем ужасного случая в первую неделю своей работы 5 лет назад. Как-то ночью трое занятых в летнее время молодых сотрудников отправились поплавать и понежиться в теплых прудах, что строго запрещалось. Хотя в парке по понятным причинам это не разглашается, не все водоемы Йеллоустона опасно горячи. В некоторые очень приятно окунуться, и часть сезонных сотрудников взяли за правило купаться по ночам, пускай это и противоречило правилам. Эти трое по глупости не взяли фонарик, что было чрезвычайно опасно, потому что почва вокруг теплых водоемов хрупкая и тонкая и легко провалиться в горячее отверстие. Во всяком случае, возвращаясь к себе в общежитие, они дошли до ручья, который им приходилось перепрыгивать раньше. Отойдя на несколько шагов назад, они на счет «три» разбежались и прыгнули. Оказалось, что это был вовсе не ручей, а пруд с кипящей водой. В темноте они заблудились. Никто из них не выжил. Я думал об этом случае, когда, уезжая из парка, ненадолго остановился у Изумрудного пруда, что в Верхнем гейзерном бассейне. Досс не успел показать его мне накануне, но я подумал, что надо хотя бы бегло взглянуть на него, ибо Изумрудный пруд — место историческое. В 1965 году во время летней научной командировки биологи, супруги Томас и Луиза Брок, совершили безумную вещь. Они собрали окаймлявшую пруд желтовато-бурую пену и исследовали ее на наличие живых организмов. К их глубокому удивлению, а потом и к удивлению более широкого круга лиц, она кишела живыми микробами. Они первыми в мире обнаружили экстремофилов — организмы, способные жить в воде, которая прежде считалась слишком горячей, или кислой, или отравленной серой, чтобы в ней могла существовать жизнь. Удивительно, что в Изумрудном пруду все это было в наличии, и тем не менее два вида организмов, получивших название Sulpholobus acidocaldarius и Thermophilus aquaticus, нашли его благоприятным для жизни. Всегда считалось, что выжить при температуре выше 50°C не может ничто, но здесь живые организмы нежились в отравленной кислой воде, которая была без малого вдвое горячее. Почти 20 лет одна из открытых Броками бактерий, Thermophilus aquaticus, оставалась лабораторной диковинкой… пока калифорнийский ученый Кэри Б. Муллис не догадался, что ее теплостойкие энзимы можно использовать для создания химического волшебства, известного как полимеразная цепная реакция (ПЦР), которая позволяет ученым из очень малого количества генетического материала, в пределе из единственной молекулы, получать множество ДНК. Это своего рода генетическое фотокопирование легло в основу всего дальнейшего развития генетики, от научных изысканий до полицейских расследований. За это открытие Муллис в 1993 году получил Нобелевскую премию по химии. А тем временем ученые находили еще более стойких микробов, ныне известных как гипертермофилы, которым требуется температура 80°C и выше. Самый теплолюбивый организм, обнаруженный до сих пор, — это, как утверждает Фрэнсис Эшкрофт[216] в книге «Жизнь в экстремальных условиях», — Pyrolobus fumarii, обитает на стенках океанских фумарол, где температура может достигать 113°C. Считают, что верхней границей жизни будет примерно 120°C, но точно этого никто не знает. Во всяком случае, находки Броков полностью изменили наши представления о живом мире. Ученый из НАСА Джей Бергстрал[217] выразил это следующим образом: «Куда бы мы ни отправились на Земле, даже в самую неблагоприятную для жизни окружающую среду, если там есть жидкая вода и какие-либо источники химической энергии, мы обнаружим жизнь». Жизнь, оказывается, бесконечно более искусна и приспособляема, чем кто-либо из нас предполагал. И это очень хорошо, поскольку, как мы скоро увидим, нам приходится жить в мире, который, кажется, совсем не рад нашему присутствию в нем. Примечания:1 Гилберт и Салливан (W. S. Gilbert, 1836–1911; Arthur Sullivan, 1842–1900) — либреттист и композитор, которые работали над четырнадцатью комическими операми в период 1871–1896 гг. 2 Конечно, космология Большого Взрыва, а точнее, расширяющейся Вселенной развивалась и до середины 1960-х годов. Александр Фридман в 1922 г. нашел решения уравнений Эйнштейна, из которых следовало, что Вселенная должна либо расширяться, либо сжиматься. Эдвин Хаббл в 1929 г. независимо обнаружил разбегание галактик. Георгий Гамов в 1946 г. понял, что расширяющаяся Вселенная в прошлом должна была быть горячей. Но только после открытия Пензиаса и Вильсона космология Большого Взрыва получила всеобщее признание среди космологов. 18 Лоуэлл сам активно вел наблюдения в обсерватории. Хотя каналы на Марсе «обнаружил» не он, а итальянский астроном Джованни Скиапарелли, именно Лоуэлл прочно увязал их с фантастическими марсианами. Впоследствии, однако, не удалось обнаружить не только марсиан, но и каналы. 19 Размеры Плутона на сегодня определены довольно точно. Его диаметр составляет 2306 ± 20 км. 20 В 2005 году группа астрономов под руководством Майкла Брауна обнаружила в поясе Койпера объект, получивший предварительное обозначение 2003 UB 313, который превосходит по размерам Плутон. Это открытие еще более обострило вопрос о планетном статусе Плутона и в итоге после длительных споров привело к лишению его статуса планеты. Это произошло 24 августа 2006 г. 21 Орбита Плутона хорошо определена, и для астрономов не составляет труда рассчитать его движение на тысячи лет в прошлое и в будущее. 183 Это, конечно, неверные утверждения. Движения астероидов и возмущения их орбит просчитываются с высокой точностью на значительные отрезки времени. Причем каждое новое наблюдение астероида повышает точность прогноза его движения. Орбиты абсолютного большинства астероидов проходят вдали от Земли, и в ближайшие десятки миллионов лет никакие возмущения не направят их к нашей планете. Опасность представляют лишь объекты, которые уже сейчас испытывают тесные сближения с Землей. Прогноз их движения должен составляться с повышенной точностью, и для этого требуются многочисленные прецизионные наблюдения. 184 Стивен Остро (Steven J. Ostro) — астроном, специалист по астероидам. В 1989 г., используя 300-метровый радиотелескоп Аресибо, впервые получил радиолокационные изображения астероида (4769 Касталия). 185 Это чересчур драматичное сравнение. Диаметр Земли составляет 12,8 тыс. км. Астероид прошел на расстоянии в 13 раз большем. Так что корректнее сравнить его пролет с пулей, ударившей в стену в метрах в десяти от вас. Это, конечно, тоже не слишком приятно, особенно если учесть, что такие пули пролетают мимо постоянно. 186 Упомянутый астероид (1993 КА2) имел диаметр менее 10 м. При падении на Землю такой объект раздробится в атмосфере и не вызовет существенных разрушений на поверхности. Подобные события случаются примерно раз в 20 лет. После 1993 года рекорд сближения с Землей таких небольших астероидов был неоднократно перекрыт. В конце марта 2004 г. был замечен булыжник размером около 5 м (2004 FU162), пролетевший всего в 6,5 тыс км от поверхности Земли. Более опасным был астероид 2002 XV90 диаметром от 20 до 50 м, который в декабре 2002 года прошел в 115 тыс. км от Земли. Такой объект может вызвать довольно серьезные разрушения в районе падения. 187 От англ. impact — удар. 188 Как бы ни разогревался астероид при движении в атмосфере, это не может причинить существенного вреда на поверхности Земли. Однако после падения мгновенно формируется огненный шар, подобный тому, что возникает при термоядерном взрыве, который высоко поднимается, сжигая все на расстоянии до нескольких сотен километров. 189 Джон С. Льюис (John S. Lewis) — профессор планетологии в университете Аризоны, специалист по химии астероидов и комет. Выдвинул идею превращения опасно сближающихся с Землей объектов в ценные источники ресурсов. 190 Чтобы покинуть околоземное пространство, действительно требуются намного более мощные ракеты, чем для орбитальных полетов. Однако возможность очень точной навигации в дальнем космосе в последние годы была продемонстрирована в целом ряде проектов. Американский зонд «NEAR-Шумейкер» несколько месяцев изучал с орбиты астероид Эрос и в конце совершил на него посадку. Японская станция «Хаябуса» дважды садилась на поверхность астероида Итокава в 300 млн км от Земли. Американский зонд «Дип Импакт» 4 июля 2005 года сбросил на ядро кометы Темпеля-1 370-килограммовый медный импактор, чтобы изучить состав выброшенного вещества. Ошибка наведения импактора не превышала 200 метров. 191 Скорее всего, взрыв ядерной боеголовки не сможет разрушить астероид. При взрыве в космосе большая часть энергии беспрепятственно рассеивается в пространстве, а остальная приведет лишь к оплавлению и испарению вещества с поверхности астероида. В отношении астероидов размером до нескольких сотен метров самым эффективным методом представляются заблаговременное — за десятки лет — их обнаружение и очень осторожная корректировка орбиты в критических случаях. Таких технологий пока нет, но они могут быть разработаны на современном уровне развития техники. Корректировка орбиты астероида размером более километра пока лежит за пределами возможностей современной технологии. 192 Том Герелс (Tom Gehrels) — астроном датского происхождения, первооткрыватель ряда комет и более 3 тыс астероидов. Много сделал для запуска программы Spacewatch по поиску астероидов, сближающихся с Землей. 193 Это не так. Современная техника наблюдений и расчетов позволяет предсказывать положение астероидов с точностью до нескольких десятков километров. Есть любители астрономии, которые наблюдают покрытия звезд астероидами, то есть прохождение теней астероидов по поверхности Земли. Чтобы планировать свои наблюдения, связанные нередко с дальними поездками, им приходится с высокой точностью рассчитывать, когда и куда упадет тень астероида. Точности данных для этого вполне хватает. Опасные астероиды наблюдаются гораздо тщательнее, и точность прогноза их движения, как правило, еще выше. 194 У этого животного действительно были длинные, выступающие вниз клыки, напоминающие те, что есть у самцов современной кабарги, дальних родственников оленей. 195 Известна также как гипертрофическая легочная остеоартропатия и синдром Мари — Бамбергера. 196 Невесомым кирпич будет на всем протяжении полета, как и любое свободно падающее тело. Однако в центре Земли он, кроме того, не будет испытывать земного тяготения, поскольку притяжение со стороны противоположных частей земного шара уравновесится. 197 В разговорах о землетрясениях часто путают разрушительную силу (интенсивность) толчков в конкретной точке на поверхности Земли, которая оценивается баллами, с энергией, выделяющейся в эпицентре землетрясения, которую характеризуют магнитудой по Рихтеру. Отсчеты по шкале магнитуд у сейсмологов не принято называть баллами. 198 Землетрясения силой 2 балла человеком практически не ощущаются и фиксируются только приборами. 199 Билл Макгуайр (Bill McGuire) — профессор вулканологии в Лондонском университетском колледже, активно изучал Йеллоустонский супервулкан. Много выступает в научно-популярных телепрограммах. 200 Джон Джеймс Одюбон (John James Audubon, 1785–1851) — американский орнитолог, натуралист и художник французского происхождения. 201 От англ. Moho's hole — «дыра Мохо». 202 Нет дыры (англ).. 203 Джон Макфи (John Angus McPhee p. 1931) — американский писатель, радикально модернизировавший жанр документальной прозы. Он стал разрабатывать характеры персонажей, насыщать повествование многочисленными деталями и применять другие приемы, ранее характерные только для художественной литературы. 204 Шавна Фогель (Shawna Vogel) — научный журналист и писатель, долгое время была постоянным автором и редактором научно-популярного журнала Discover, автор книги «Голая Земля», посвященной тектонике плит. В настоящее время занимается вопросами лицензирования биотехнологий в Институте Броада при Массачусетском технологическом институте. 205 Одна из основных составляющих земной мантии — соединение MgSi03. В нормальных условиях из этого вещества образуется минерал перовскит, получивший название в честь графа Л. А. Перовского. В глубине мантии на уровне слоя «D» он переходит в особую форму, постперовскит, отличающуюся более плотной кристаллической структурой. 206 Речь идет о так называемом магнитогидродинамическом (МГД) эффекте. 207 Здесь роль магнитного поля Земли несколько преувеличена. Космические лучи, которые захватываются магнитным полем в поясе Ван Аллена, — это частицы относительно низкой энергии, входящие в состав солнечного ветра. Без магнитного поля они задерживались бы в верхних слоях земной атмосферы. Энергичные частицы космических лучей, приходящие извне Солнечной системы, земное магнитное поле отклонить не в состоянии. 208 При систематическом мониторинге активности извержение практически любого вулкана можно предсказать своевременно. Однако во многих районах такого мониторинга просто не ведется. Что же касается качества прогнозов, то в деле предсказания землетрясений прогресс на сегодня гораздо меньшие, чем в прогнозе вулканических извержений. Фактически на сегодня вообще нет способов краткосрочного прогноза землетрясений. 209 При взрыве вулканов этого типа огромные объемы магмы — десятки и сотни кубических километров — выбрасываются на поверхность виде пепла, обломков и пористых пирокластических потоков, опустошая магматический очаг, расположенный на глубине нескольких километров. Затем приповерхностные породы обваливаются в магматический очаг. 210 Плюмами называют медленные восходящие конвективные потоки в земной мантии. Некоторые из них берут начало на глубине нескольких тысяч километров на границе мантии и ядра. 211 Столь большое различие возникает из-за того, что автор забывает извлечь кубический корень из объемов выброшенного вещества. Объемы извержений Сент-Хеленса, Кракатау и Йеллоустонского вулканов составляют соответственно около 2,5, 25 и 2500 км3. Если выброс Кракатау представить мячом для гольфа (4,3 см), то извержению Сент-Хеленса соответствует шарик диаметром 2 см, а гигантскому извержению в Йеллоустоне — 20 см, чуть меньше стандартного футбольного мяча. Вряд ли вам удастся за ним спрятаться. 212 Современные генетические исследования действительно говорят о том, что человечество прошло через так называемое «бутылочное горлышко» — резкое сокращение численности, приводящее к уменьшению генетического разнообразия. Однако это произошло раньше — около 130 тыс. лет назад и вряд ли было связано с извержением вулкана Тоба. Около 70 тыс. лет назад тоже наблюдалось сокращение популяции Homo sapiens, однако оно не было столь катастрофическим. 213 Эрик Кристиансен (Eric Н. Christiansen) — профессор геологии Биргхэмского молодежного университета, штат Юта, специалист по планетологии, вулканологии и петрологии. 214 Роберт Б. Смит (Robert В. Smith) — профессор университета штата Юта, специалист по применению системы глобального позиционирования GPS в задачах сейсмологии и тектоники плит. 215 Ли Дж. Сигель (Lee J. Siegel) — специалист по новостям науки из университета штата Юта. 216 Фрэнсис Эшкрофт (Frances Ashcroft) — профессор физиологии Оксфордского университета. Ей принадлежит авторство двух монографий по медицине и научно-популярной книги «Жизнь в экстремальных условиях». 217 Джей Бергстрал (Jay Т. Bergstralh) — американский планетолог, специалист по атмосферам планет-гигантов и переносу радиоактивных элементов; был одним из ключевых специалистов при подготовке миссии космических аппаратов «Вояджер». |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх |
||||
|