|
||||
|
ГЛАВА 3 Основные компоненты языка UMLЯзык UML представляет собой общецелевой язык визуального моделирования, который разработан для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем. Язык UML одновременно является простым и мощным средством моделирования, который может быть эффективно использован для построения концептуальных, логических и графических моделей сложных систем самого различного целевого назначения. Этот язык вобрал в себя наилучшие качества методов программной инженерии, которые с успехом использовались на протяжении последних лет при моделировании больших и сложных систем. Язык UML основан на некотором числе базовых понятий, которые могут быть изучены и применены большинством программистов и разработчиков, знакомых с методами объектно-ориентированного анализа и проектирования. При этом базовые понятия могут комбинироваться и расширяться таким образом, что специалисты объектного моделирования получают возможность самостоятельно разрабатывать модели больших и сложных систем в самых различных областях приложений. Конструктивное использование языка UML основывается на понимании общих принципов моделирования сложных систем и особенностей процесса объектно-ориентированного анализа и проектирования в частности. Выбор выразительных средств для построения моделей сложных систем предопределяет те задачи, которые могут быть решены с использованием данных моделей. При этом одним из основных принципов построения моделей сложных систем является принцип абстрагирования, который предписывает включать в модель только те аспекты проектируемой системы, которые имеют непосредственное отношение к выполнению системой своих функций или своего целевого предназначения. При этом все второстепенные детали опускаются, чтобы чрезмерно не усложнять процесс анализа и исследования полученной модели. Другим принципом построения моделей сложных систем является принцип многомодельности. Этот принцип представляет собой утверждение о том, что никакая единственная модель не может с достаточной степенью адекватности описывать различные аспекты сложной системы. Применительно к методологии ООАП это означает, что достаточно полная модель сложной системы допускает некоторое число взаимосвязанных представлений (views), каждое из которых адекватно отражает некоторый аспект поведения или структуры системы. При этом наиболее общими представлениями сложной системы принято считать статическое и динамическое представления, которые в свою очередь могут подразделяться на другие более частные представления.) феномен сложной системы как раз и состоит в том, что никакое ее единственное представление не является достаточным для адекватного выражения всех особенностей моделируемой системы. Еще одним принципом прикладного системного анализа является принцип иерархического построения моделей сложных систем. Этот принцип предписывает рассматривать процесс построения модели на разных уровнях абстрагирования или детализации в рамках фиксированных представлений. При этом исходная или первоначальная модель сложной системы имеет наиболее общее представление (метапредставление). Такая модель строится на начальном этапе проектирования и может не содержать многих деталей и аспектов моделируемой системы. Рис. 3.1. Общая схема взаимосвязей моделей и представлений сложной системы в процессе объектно-ориентированного анализа и проектирования Таким образом, процесс ООАП можно представить как поуровневый спуск от наиболее общих моделей и представлений концептуального уровня к более частным и детальным представлениям логического и физического уровня. При этом на каждом из этапов ООАП данные модели последовательно дополняются все большим количеством деталей, что позволяет им более адекватно отражать различные аспекты конкретной реализации сложной системы. Общая схема взаимосвязей моделей ООАП представлена на рис. 3.1. 3.1. Назначение языка UMLЯзык UML предназначен для решения следующих задач:
Чтобы решить указанные выше задачи, за свою недолгую историю язык UML претерпел определенную эволюцию. В результате описание самого языка UML стало нетривиальным, поскольку семантика базовых понятий включает в себя целый ряд перекрестных связей с другими понятиями и конструкциями языка. В связи с этим так называемое линейное или последовательное рассмотрение основных конструкций языка UML стало практически невозможным, т. к. одни и те же понятия могут использоваться при построении различных диаграмм или представлений. В то же время каждое из представлений модели обладает собственными семантическими особенностями, которые накладывают отпечаток на семантику базовых понятий языка в целом. Учитывая эти особенности, принятая в книге последовательность изучения языка UML основывается на рассмотрении основных графических средств моделирования, а именно – канонических диаграмм. Все нужные для построения диаграмм понятия вводятся по мере необходимости. Тем не менее в этой главе следует остановиться на общих особенностях языка UML, которые в той или иной степени влияют на понимание его базовых конструкций. 3.2. Общая структура языка UMLС самой общей точки зрения описание языка UML состоит из двух взаимодействующих частей, таких как:
Абстрактный синтаксис и семантика языка UML описываются с использованием некоторого подмножества нотации UML. В дополнение к этому, нотация UML описывает соответствие или отображение графической нотации в базовые понятия семантики. Таким образом, с функциональной точки зрения эти две части дополняют друг друга. При этом семантика языка UML описывается на основе некоторой метамодели, имеющей три отдельных представления: абстрактный синтаксис, правила корректного построения выражений и семантику. Рассмотрение семантики языка UML предполагает некоторый «полуформальный» стиль изложения, который объединяет естественный и формальный языки для представления базовых понятий и правил их расширения. Семантика определяется для двух видов объектных моделей: структурных моделей и моделей поведения. Структурные модели, известные также как статические модели, описывают структуру сущностей или компонентов некоторой системы, включая их классы, интерфейсы, атрибуты и отношения. Модели поведения, называемые иногда динамическими моделями, описывают поведение или функционирование объектов системы, включая их методы, взаимодействие и сотрудничество между ними, а также процесс изменения состояний отдельных компонентов и системы в целом. Для решения столь широкого диапазона задач моделирования разработана достаточно полная семантика для всех компонентов графической нотации. Требования семантики языка UML конкретизируются при построении отдельных видов диаграмм, последовательное рассмотрение которых служит темой второй части книги. Нотация языка UML включает в себя описание отдельных семантических элементов, которые могут применяться при построении диаграмм. Формальное описание самого языка UML основывается на некоторой общей иерархической структуре модельных представлений, состоящей из четырех уровней:
Уровень мета-метамодели образует исходную основу для всех метамодель-ных представлений. Главное предназначение этого уровня состоит в том, чтобы определить язык для спецификации метамодели. Мета-метамодель определяет модель языка UML на самом высоком уровне абстракции и является наиболее компактным ее описанием. С другой стороны, мета-метамодель может специфицировать несколько метамоделей, чем достигается потенциальная гибкость включения дополнительных понятий. Хотя в книге этот уровень не рассматривается, он наиболее тесно связан с теорией формальных языков. Примерами понятий этого уровня служат метакласс, метаатрибут, метаоперация. Метамодель является экземпляром или конкретизацией мета-метамодели. Главная задача этого уровня – определить язык для спецификации моделей. Данный уровень является более конструктивным, чем предыдущий, поскольку обладает более развитой семантикой базовых понятий. Все основные понятия языка UML – это понятия уровня метамодели. Примеры таких понятий – класс, атрибут, операция, компонент, ассоциация и многие другие. Именно рассмотрению семантики и графической нотации понятий уровня метамодели посвящена данная книга. Модель в контексте языка UML является экземпляром метамодели в том смысле, что любая конкретная модель системы должна использовать только понятия метамодели, конкретизировав их применительно к данной ситуации. Это уровень для описания информации о конкретной предметной области. Однако если для построения модели используются понятия языка UML, то необходима полная согласованность понятий уровня модели с базовыми понятиями языка UML уровня метамодели. Примерами понятий уровня модели могут служить, например, имена полей проектируемой базы данных, такие как имя и фамилия сотрудника, возраст, должность, адрес, телефон. При этом данные понятия используются лишь как имена соответствующих информационных атрибутов. Конкретизация понятий модели происходит на уровне объектов. В настоящем контексте объект является экземпляром модели, поскольку содержит конкретную информацию относительно того, чему в действительности соответствуют те или иные понятия модели. Примером объекта может служить следующая запись в проектируемой базе данных: «Илья Петров, 30 лет, иллюзионист, ул. Невидимая, 10-20, 100-0000». Описание семантики языка UML предполагает рассмотрение базовых понятий только уровня метамодели, который представляет собой лишь пример или частный случай уровня мета-метамодели. Метамодель UML является по своей сути скорее логической моделью, чем физической или моделью реализации. Особенность логической модели заключается в том, что она концентрирует внимание на декларативной или концептуальной семантике, опуская детали конкретной физической реализации моделей. При этом отдельные реализации, использующие данную логическую метамодель, должны быть согласованы с ее семантикой, а также поддерживать возможности импорта и экспорта отдельных логических моделей. В то же время, логическая метамодель может быть реализована различными способами для обеспечения требуемого уровня производительности и надежности соответствующих инструментальных средств. В этом заключается недостаток логической модели, которая не содержит на уровне семантики требований, обязательных для ее эффективной последующей реализации. Однако согласованность метамодели с конкретными "моделями реализации является обязательной для всех разработчиков программных средств, обеспечивающих поддержку языка UML. Метамодель языка UML имеет довольно сложную структуру, которая включает в себя порядка 90 метаклассов, более 100 метаассоциаций и почти 50 стереотипов, число которых возрастает с появлением новых версий языка. Чтобы справиться с этой сложностью языка UML, все его элементы организованы в логические пакеты. Поэтому рассмотрение языка UML на метамо-дельном уровне заключается в описании трех его наиболее общих логических блоков или пакетов: основные элементы, элементы поведения и общие механизмы. 3.3. Пакеты в языке UMLПакет – основной способ организации элементов модели в языке UML. Каждый пакет владеет всеми своими элементами, т. е. теми элементами, которые включены в него. Про соответствующие элементы пакета говорят, что они принадлежат пакету или входят в него. При этом каждый элемент может принадлежать только одному пакету. В свою очередь, одни пакеты могут быть вложены в другие пакеты. В этом случае первые называются подпаке-тами, поскольку все элементы подпакета будут принадлежать более общему пакету. Тем самым для элементов модели задается отношение вложенности пакетов, которое представляет собой иерархию. Из главы 2 нам также известно, что для графического представления иерархий могут использоваться графы специального вида, которые называются деревьями (см. рис. 2.5Г2.6). Однако в языке UML эти графические обозначения настолько модифицированы, что соответствующие ассоциации с общетеоретическими понятиями могут представлять определенную трудность для начинающих разработчиков. Тем не менее, на протяжении всей книги подчеркивается важность умения ассоциировать специальные конструкции языка UML с соответствующими понятиями теории множеств и системного моделирования, что, в некотором смысле, формирует стиль мышления системного аналитика. В противном случае не исключены досадные ошибки не только на начальном этапе концептуализации предметной области, но и в процессе построений различных представлений систем. В языке UML для визуализации пакетов разработана специальная символика или графическая нотация, которой мы и будем пользоваться в дальнейшем. Именно с описания этой системы обозначений мы приступим к изучению основных элементов данного языка. Для графического изображения пакетов на диаграммах применяется специальный графический символ – большой прямоугольник с небольшим прямоугольником, присоединенным к левой части верхней стороны первого (рис. 3.2 а, б). Можно сказать, что визуально символ пакета напоминает пиктограмму папки в популярном графическом интерфейсе. Внутри большого прямоугольника может записываться информация, относящаяся к данному пакету. Если такой информации нет, то внутри большого прямоугольника записывается имя пакета, которое должно быть уникальным в пределах рассматриваемой модели (рис. 3.2, а). Если же такая информация имеется, то имя пакета записывается в верхнем маленьком прямоугольнике (рис. 3.2, б). Рис. 3.2. Графическое изображение пакета в языке UML Перед именем пакета может помещаться строка текста, содержащая некоторое ключевое слово. Подобными ключевыми словами являются заранее определенные в языке UML слова, которые получили название стереотипов. Такими стереотипами для пакетов являются слова facade, framework, stub и topLevel. В качестве содержимого пакета могут выступать имена его отдельных элементов и их свойства, такие как видимость элементов за пределами пакета. Более подробно стереотипы и видимость элементов будут рассмотрены в последующих главах книги. Конечно, сами по себе пакеты могут найти ограниченное применение, поскольку содержат лишь информацию о входящих в их состав элементах модели. Не менее важно представить графически отношения, которые могут иметь место между отдельными пакетами. Как и в теории графов, для визуализации отношений в языке UML применяются отрезки линий, внешний вид которых имеет смысловое содержание. Одним из типов отношений между пакетами является отношение вложенности или включения пакетов друг в друга. С одной стороны, в языке UML это отношение может быть изображено без использования линий простым размещением одного пакета-прямоугольника внутри другого пакета-прямоугольника (рис. 3.3). Так, в данном случае пакет с именем ПакетЛ содержит в себе два подпакета: Пакет_2 и Пакет_3. Рис. 3.3. Графическое изображение вложенности пакетов друг в друга Рис. 3.4. Графическое изображение вложенности пакетов друг в друга с помощью явной визуализации отношения включения С другой стороны, это же отношение может быть изображено с помощью отрезков линий аналогично графическому представлению дерева. В этом случае наиболее общий пакет (метапакет или контейнер) изображается в верхней части рисунка, а его подпакеты – уровнем ниже. Метапакет соединяется с подпакетами сплошной линией, на конце которой, примыкающей к метапакету, изображается специальный символ © (знак плюс в кружочке). Этот символ означает, что подпакеты являются «собственностью» или частью контейнера, и, кроме этих подпакетов, контейнер не содержит никаких других подпакетов. Рассмотренный выше пример (рис. 3.3) может быть представлен с помощью явной визуализации отношения включения (рис. 3.4). На графических диаграммах между пакетами могут указываться и другие типы отношений, часть из которых будут рассмотрены с последующих главах книги. 3.4. Основные пакеты метамодели языка UMLВозвращаясь к рассмотрению языка UML, напомним, что основой его представления на метамодельном уровне является описание трех его логических блоков или пакетов: Основные элементы, Элементы поведения и Общие механизмы (рис. 3.5). Эти пакеты в свою очередь делятся на отдельные подпакеты. Например, пакет Основные элементы состоит из подпакетов: Элементы ядра, Вспомогательные элементы, Механизмы расширения и типы данных (рис. 3.6). При этом пакет Элементы ядра описывает базовые понятия и принципы включения в структуру метамодели основных понятий языка, таких как метаклассы, метаассоциации и метаатрибуты. Пакет Вспомогательные элементы определяет дополнительные конструкции, которые расширяют базовые элементы для описания зависимостей, шаблонов, физических структур и элементов представлений. Пакет Механизмы расширения задает правила уточнения и расширения семантики базовых элементов моделей. Пакет Типы данных определяет основные структуры данных для языка UML. Рис. 3.5. Основные пакеты метамодели языка UML Рис. 3.6. Подпакеты пакета Основные элементы языка UML Пакет Основные элементыНиже дается краткая характеристика элементов каждого из перечисленных подпакетов, входящих в состав пакета Основные элементы. Более полное рассмотрение отдельных компонентов метамодели будет представлено в главах, посвященных изучению отдельных видов канонических диаграмм. Последние аккумулируют в себе не только различные представления моделируемой системы, но и более детально раскрывают семантические особенности применения базовых конструкций языка UML в процессе построения конкретных моделей. Пакет Элементы ядраПакет Элементы ядра является наиболее фундаментальным из всех подпакетов, которые входят в пакет Основные элементы языка UML. Этот пакет определяет основные абстрактные и конкретные компоненты, необходимые для разработки объектных моделей. При этом абстрактные компоненты метамодели не имеют экземпляров или примеров и используются исключительно для уточнения других компонентов модели. Конкретные компоненты метамодели имеют экземпляры и отражают особенности представления лиц, которые разрабатывают объектные модели. Пакет Элементы ядра специфицирует базовые конструкции, требуемые для описания исходной метамодели, и определяет архитектурный «скелет» для присоединения дополнительных конструкций языка, таких как метаклассы, метаассоциации и метаатрибуты. Хотя пакет Элементы ядра содержит семантику, достаточную для определения всей оставшейся части языка UML, он не является мета-метамоделью UML. В этот пакет входят основные метаклассы языка UML: класс (Class), атрибут (Attribute), ассоциациях (Association), ассоциация-класс (AssociationClass), конец ассоциации (AssociationEnd), свойство поведения (BehavioralFeature), классификатор (Classifier), ограничение (Constraint), тип данных (DataType), зависимость (Dependency), элемент (Element), право на элемент (ElementOwnership), свойство (Feature), обобщение (Generalization), элемент отношения обобщения (GeneralizableElement), интерфейс (Interface), метод (Method), элемент модели (ModelElement), пространство имен (Namespace), операция (Operation), параметр (Parameter), структурное свойство (StructuralFeature), правила правильного построения выражений (Well-formedness rules). Пакет Вспомогательные элементыПакет Вспомогательные элементы является подпакетом пакета Основные элементы и специфицирует дополнительные конструкции языка UML, которые расширяют пакет Элементы ядра. Вспомогательные элементы обеспечивают понятийный базис для зависимостей, шаблонов, физических структур и элементов представлений. В этот пакет входят следующие метаклассы: связывание (Binding), комментарий (Comment), компонент (Component), узел (Node), презентация (Presentation), уточнение (Refinement), цепочка зависимостей (Trace), потребление (Usage), элемент представления (ViewElement), зависимость (Dependency), элемент модели (ModelElement), правила правильного построения выражений (Well-formedness rules). При этом три последних метакласса взяты из пакета Элементы ядра и используются для спецификации остальных. Пакет Механизмы расширенияПакет Механизмы расширения также является подпакетом пакета Основные элементы и специфицирует порядок включения в модель элементов с уточненной семантикой, а также модификацию отдельных компонентов языка UML для более точного отражения специфики моделируемых систем. Механизм расширения определяет семантику для стереотипов, ограничений и помеченных значений. Хотя язык UML обладает богатым множеством понятий и нотаций для моделирования типичных программных систем, реально разработчик может столкнуться с необходимостью включить в модель дополнительные свойства или нотации, которые не определены явно в языке U ML. При этом разработчики часто сталкиваются с необходимостью включения в модель графической информации, такой, например, как дополнительные значки и украшения. Для этой цели в языке UML предусмотрены три механизма расширения, которые могут использоваться совместно или раздельно для определения новых элементов модели с отличающимися семантикой, нотацией и свойствами от специфицированных в метамодели языка UML элементов. Такими механизмами являются: ограничение (Constraint), стереотип (Stereotype) и помеченное значение (TaggedValue). Таким образом, механизмы расширения языка UML предназначены для выполнения следующих задач:
Хотя вопросы расширения метамодели UML выходят за пределы настоящей книги, следует знать о потенциальной возможности явного добавления в язык UML новых метаклассов и других метаконструкций. При этом, однако, необходимо соблюдать правило порождения новых метаклассов от уже имеющихся в языке UML. Эта возможность единственно зависит от свойств отдельных инструментальных средств, поддерживающих язык UML, или от особенностей мета-метамодельного представления самого процесса ООАП. Наиболее важные из встроенных механизмов расширения основываются на понятии стереотип. Стереотипы обеспечивают некоторый способ классификации модельных элементов на уровне объектной модели и возможность добавления в язык UML «виртуальных» метаклассов с новыми атрибутами и семантикой. Другие встроенные механизмы расширения основываются на понятии списка свойств, содержащего помеченные значения и ограничения. Эти механизмы обеспечивают пользователю возможность включения дополнительных свойств и семантики непосредственно в отдельные элементы модели. Пакет Типы данныхПакет Типы данных является четвертым подпакетом пакета Основные элементы и, как следует из его названия, специфицирует различные типы данных, которые могут использоваться в языке UML. Этот пакет имеет более простую по сравнению с другими пакетами внутреннюю структуру и описание, поскольку предполагается, что семантика соответствующих понятий хорошо известна. В метамодели UML типы данных используются для объявления типов атрибутов классов. Они записываются в форме строк текста на диаграммах и не имеют отдельного значка «тип данных». Благодаря этому происходит уменьшение размеров диаграмм без потери информации. Однако каждая из одинаковых записей для некоторого типа данных должна соответствовать одному и тому же типу данных в модели. При этом типы данных, используемые в описании языка UML, могут отличаться от типов данных, которые определяет разработчик для своей модели на языке UML. Типы данных в последнем случае будут являться частным случаем или экземплярами метакласса типы данных, который определен в метамодели. При задании типа данных наиболее часто применяется неформальная конструкция, которая получила называние перечисления. Речь идет о множестве допустимых значений атрибута, которое наделяется некоторым отношением порядка. При этом упорядоченность значений либо указывается явно заданием первого и последнего элементов списка, либо следует неявно в случае простого типа данных, как, например, для множества натуральных чисел. В пакете Типы данных определены способы спецификации перечислений для корректного задания допустимых значений атрибутов. Для определения различных типов данных в языке UML используются как простые конструкции: целое число (Integer), строка (String), имя (Name), Булев (Boolean), время (Time), кратность (Multiplicity), тип видимости (VisibilityKind), диапазон кратности (MultiplicityRange), так и более сложные: выражение (Expression), булевское выражение (BooleanExpression), тип агрегирования (AggregationKind), тип изменения (ChangeableKind), геометрия (Geometry), отображение (Mapping), выражение-процедура (ProcedureExpression), тип псевдосостояния (PseudostateKind), выражение времени (TimeExpression), непрерываемый (Uninterpreted). Пакет Элементы поведенияЭтот пакет является самостоятельной компонентой языка UML и, как следует из его названия, специфицирует динамику поведения в нотации UML. Пакет Элементы поведения состоит из четырех подпакетов: Общее поведение, Кооперации, Варианты использования и Автоматы (рис. 3.7). Ниже дается краткая характеристика каждого из этих подпакетов. Рис. 3.7. Подпакеты пакета Элементы поведения языка UML Пакет Общее поведениеПакет Общее поведение является наиболее фундаментальным из всех подпакетов и определяет базовые понятия ядра, необходимые для всех элементов поведения. В этом пакете специфицирована семантика для динамических элементов, которые включены в другие подпакеты элементов поведения. В пакет Общее поведение входит достаточно большое число элементов, таких как объект (Object), действие (Action), последовательность действий (ActionSequence), аргумент (Argument), экземпляр (Instance), исключение (Exception), связь (Link), сигнал (Signal), значение данных (DataValue), связь атрибутов (AttributeLink), действие вызова (CallAction), действие создания (CreateAction), действие уничтожения (DestroyAction). Наиболее важным понятием пакета Общее поведение является объект. Под объектом в языке UML понимается отдельный экземпляр или пример класса, структура и поведение которого полностью определяется порождающим этот объект классом. Предполагается, что все без исключения объекты, порожденные одним и тем же классом, имеют совершенно одинаковую структуру и поведение, хотя каждый из этих объектов может иметь свое собственное множество связей атрибутов. При этом каждая связь атрибута относится к некоторому экземпляру, обычно к значению данных. Это множество может быть модифицировано согласно спецификации отдельного атрибута в описании класса. Рассматривая данный пакет, нельзя не сказать о том, что в языке UML под поведением понимается не только процесс изменения атрибутов объектов в результате выполнения операций над их значениями, но и такие процедуры, как создание и уничтожение самих объектов. При этом динамика взаимодействия объектов, которая определяет их поведение, описывается с помощью специальных понятий, таких как сигналы и действия. Пакет КооперацииПакет Кооперации специфицирует контекст поведения при использовании элементов модели для выполнения отдельной задачи. В нем задается семантика понятий, которые необходимы для ответа на вопрос: «Как различные элементы модели взаимодействуют между собой с точки зрения структуры?» Этот пакет использует конструкции, определенные в пакетах Основные элементы языка UML и Общее поведение. В частности, в пакет Кооперации входят элементы: кооперация (Collaboration), взаимодействие (Interaction), сообщение (Message), роль ассоциации (AssociationRole), роль классификатора (ClassifierRole), роль конца ассоциации (AssociationEndRole). Как можно догадаться из названия пакета, его элементы непосредственно используются при построении диаграмм кооперации. Понятие кооперации имеет важное значение для представления взаимодействия элементов модели с точки зрения классификаторов и ассоциаций. Особенности их применения будут более детально рассмотрены при изучении диаграммы кооперации (см. главу 9). Пакет Варианты использованияПакет Варианты использования специфицирует поведение при включении в модель специальных конструкций, которые в языке UML называются актерами и вариантами использования. Эти понятия служат для определения функциональности моделируемой сущности, такой как система. Особенность элементов этого пакета состоит в том, что они используются для первоначального определения поведения сущности без спецификации ее внутренней структуры. В пакет Варианты использования кроме уже упомянутых элементов актер (Actor) и вариант использования (UseCase) входят: расширение (Extension), точка расширения (ExtensionPoint), включение (Include) и экземпляр варианта использования (UseCaselnstance). Более подробно некоторые из этих понятий будут рассмотрены при описании диаграмм вариантов использования (см. главу 4). Пакет АвтоматыПакет Автоматы специфицирует поведение при построении моделей с использованием систем переходов для конечного множества состояний. В нем определено множесто понятий, которые необходимы для представления поведения модели в виде дискретного пространства с конечным числом состояний и переходов. Формализм автомата, который используется в языке UML, отличается от формализма^теории автоматов своей объектной ориентацией. Автоматы являются основным средством моделирования поведения различных элементов языка UML. Например, автоматы могут использоваться для моделирования поведения индивидуальных сущностей, таких как экземпляры классов, а также для спецификации взаимодействий между сущностями, таких как кооперации. Формализм автоматов дополнительно обеспечивает семантический базис для графов деятельности, которые являются частным случаем автомата. В пакет Автоматы входят элементы: состояние (State), переход (Transition), событие (Event), автомат (StateMachine), простое состояние (SimpleState), составное состояние CompositeState, псевдосостояние (PseudoState), конечное состояние (FinalState) и некоторые другие. Как уже отмечалось выше (см. главу 2), одним из ключевых понятий при моделировании динамических свойств систем является состояние. При этом под состоянием в языке UML понимается абстрактный метакласс, используемый для моделирования ситуации или процесса, в ходе которых имеет место (обычно неявное) выполнение некоторого инвариантного условия. Примером такого инвариантного условия может быть состояние ожидания объектом выполнения некоторого внешнего события, например запроса или передачи управления. С другой стороны, состояние может использоваться для моделирования динамических условий, таких как процесс выполнения некоторой деятельности. В этом случае момент начала выполнения деятельности является переходом объекта в соответствующее состояние. Более подробно понятия этого пакета будут рассмотрены при изучении диаграмм состояний (см. главу 6). Пакет Общие механизмыВ этом пакете определены общие механизмы, которые применимы ко всем моделям UML. Пакет состоит из единственного подпакета управления моделями (рис. 3.8). Этот подпакет служит для спецификации способов организации элементов в модели, пакеты и подсистемы. Кратко рассмотрим основные особенности данного подпакета. Рис. 3.8. Состав пакета Общие механизмы Пакет Управление моделямиПакет Управление моделями (Model Management) специфицирует базовые элементы языка UML, которые необходимы для формирования всех модельных представлений. Именно в нем определяется семантика модели (Model), пакета (Package) и подсистемы (Subsystem). Эти элементы служат своеобразными контейнерами для группировки других элементов модели. Пакет является метаклассом в языке UML и предназначен, как отмечалось выше, для организации других элементов модели, таких как другие пакеты, классификаторы и ассоциации. Пакет может также содержать ограничения и зависимости между элементами модели в самом пакете. Предполагается, что каждый элемент пакета имеет видимость только внутри данного пакета. Это означает, что за пределами пакета никакой его элемент не может быть использован, если нет дополнительных указаний на импорт или доступ к отдельным элементам пакета. Со своей стороны, пакеты со всем своим содержимым определены в некотором пространстве имен, которое определяет единственность использования имен всех элементов модели. Другими словами, имя каждого элемента модели должно быть единственным или уникальным в некотором пространстве имен, которое, являясь само элементом модели, может быть вложено в более общее пространство имен. Модель является подклассом пакета и представляет собой абстракцию физической системы, которая предназначена для вполне определенной цели. Именно эта цель предопределяет те компоненты, которые должны быть включены в модель и те, рассмотрение которых не является обязательным. Другими словами, модель отражает релевантные аспекты физической системы, оказывающие непосредственное влияние на достижение поставленной цели. В прикладных задачах цель обычно задается в форме исходных требований к системе, которые, в свою очередь, в языке UML записываются в виде вариантов использования системы. В языке UML для одной и той же физической системы могут быть определены различные модели, каждая из которых специфицирует систему с различных точек зрения. Примерами таких моделей являются: логическая модель, модель проектирования, модель вариантов использования и др. При этом каждая такая модель имеет свою собственную точку зрения на физическую систему и свой собственный уровень абстракции. Модели, как и пакеты, могут быть вложенными друг в друга. Со своей стороны, пакет может включать в себя несколько различных моделей одной и той же системы, и в этом состоит один из важнейших механизмов разработки моделей на языке UML. Подсистема есть просто группировка элементов модели, которые специфицируют некоторое простейшее поведение физической системы. В метамоде-ли UML подсистема является подклассом как пакета, так и классификатора. Элементы подсистемы делятся на две части – спецификацию поведения и его реализацию. Для графического представления подсистемы применяется специальное -обозначение – прямоугольник, как в случае пакета, но дополнительно разделенный на три секции (рис. 3.9). При этом в верхнем маленьком прямоугольнике изображается символ, по своей форме напоминающий «вилку» и указывающий на подсистему. Имя подсистемы вместе с необязательным ключевым словом или стереотипом записывается внутри большого прямоугольника. Однако при наличии строк текста внутри большого прямоугольника имя подсистемы может быть записано рядом с обозначением «вилки». Рис. 3.9. Графическое изображение подсистемы в языке UML Операции подсистемы записываются в левой верхней секции, ниже указываются элементы спецификации, а справа от вертикальной линии – элементы реализации. При этом два последних раздела помечаются соответствующими метками: «Элементы спецификации» и «Элементы реализации». Секция операций никак не помечается. Если в подсистеме отсутствуют те или иные секции, то они совсем не отображаются на схеме. 3.5. Специфика описания метамодели языка UMLМетамодель языка UML описывается на некотором полуформальном языке с использованием трех видов представлений:
Абстрактный синтаксис представляет собой модель для описания некоторой части языка UML, предназначенной для построения диаграмм классов на основе описаний систем на естественном языке. Возможности абстрактного синтаксиса в языке UML довольно ограничены и имеют отношение только к интерпретации обозначений отдельных компонентов диаграмм, связей между компонентами и допустимых дополнительных обозначений. К элементам абстрактного синтаксиса относятся некоторые ключевые слова и значения отдельных атрибутов базовых понятий уровня метамодели, которые имеют фиксированное обозначение в виде текста на естественном языке. Правила правильного построения выражений используются для задания дополнительных ограничений или свойств, которыми должны обладать те или иные компоненты модели. Поскольку исходным понятием ООП является понятие класса, его общими свойствами должны обладать все экземпляры, которые в этом смысле должны быть инвариантны друг другу. Для задания этих инвариантных свойств классов и отношений необходимо использовать специальные выражения некоторого формального языка, в рамках UML получившего название языка объектных ограничений (Object Constraint Language, ОСЬ). Хотя язык ОСЬ и использует естественный язык для формулировки правил правильного построения выражений, особенности его применения являются темой самостоятельного обсуждения. Основные особенности языка ОСЬ рассмотрены в приложении. Семантика языка UML описывается в основном на естественном языке, но может включать в себя некоторые дополнительные обозначения, вытекающие из связей определяемых понятий с другими понятиями. Семантика понятий раскрывает их смысл или содержание. Сложность описания семантики языка UML заключается именно в метамодельном уровне представлений его основных конструкций. С одной стороны, понятия языка UML имеют абстрактный характер (ассоциация, композиция, агрегация, сотрудничество, состояние). С другой стороны, каждое из этих понятий допускает свою конкретизацию на уровне модели (сотрудник, отдел, должность, стаж). Сложность описания семантики языка UML вытекает из этой двойственности понятий. Здесь мы должны придерживаться традиционных правил изложения, поскольку понимание семантики носит индуктивный характер и требует для своей интерпретации примеров уровня модели и объекта. Иллюстрация абстрактных понятий на примере конкретных свойств и отношений, а также их значений позволяет акцентировать внимание на общих инвариантах этих понятий, что совершенно необходимо для понимания их семантики. Хотя сам термин «естественный язык» далеко не однозначен и порождает целый ряд дополнительных вопросов, здесь мы ограничимся его трактовкой в форме обычного текста на русском невозможно, английском языках. Как бы ни хотелось некоторым из отечественных разработчиков, полностью избежать использования английского при описании языка UML не удастся. Тем не менее если исключить написание стандартных элементов и некоторых ключевых слов, то во всех остальных случаях под естественным языком можно понимать русский без специальных оговорок. Для придания формального характера моделям UML использование естественного языка должно строго соответствовать определенным правилам. Например, описание семантики языка UML может включать в себя фразы типа «Сущность А обладает способностью» или «Сущность Б есть сущность В». В каждом из этих случаев мы будем понимать смысл фраз, руководствуясь традиционным пониманием предложений русского языка. Однако этого может оказаться недостаточно для более формального представления знаний о рассматриваемых сущностях. Тогда необходимо дополнительно специфицировать семантику этих простых фраз, для чего рекомендуется использовать следующие правила:
В дополнение к этому будут использоваться следующие правила выделения текста:
Рассмотренные выше правила выделения текста имеют непосредственное отношение к англоязычным терминам языка ,UML. Поскольку вопросы локализации языка UML до настоящего времени не нашли своего отражения в работе OMG, отечественным специалистам придется самостоятельно дополнять эти правила на случай использования в качестве естественного русского языка. В книге мы будем придерживаться двух дополнительных рекомендаций:
В рамках языка UML все представления о модели сложной системы фиксируются в виде специальных графических конструкций, получивших название диаграмм. В терминах языка UML определены следующие виды диаграмм:
Из перечисленных выше диаграмм некоторые служат для обозначения двух и более других подвидов диаграмм. При этом в качестве самостоятельных представлений в языке UML используются следующие диаграммы:
Перечень этих диаграмм и их названия являются каноническими в том смысле, что представляют собой неотъемлемую часть графической нотации языка UML. Более того, процесс ООАП неразрывно связан с процессом построения этих диаграмм. При этом совокупность построенных таким образом диаграмм является самодостаточной в том смысле, что в них содержится вся информация, которая необходима для реализации проекта сложной системы. Каждая из этих диаграмм детализирует и конкретизирует различные представления о модели сложной системы в терминах языка UML. При этом диаграмма вариантов использования представляет собой наиболее общую концептуальную модель сложной системы, которая является исходной для построения всех остальных диаграмм. Диаграмма классов является, по своей сути, логической моделью, отражающей статические аспекты структурного построения сложной системы. Диаграммы поведения также являются разновидностями логической модели, которые отражают динамические аспекты функционирования сложной системы. И, наконец, диаграммы реализации служат для представления физических компонентов сложной системы и поэтому относятся к ее физической модели. Таким образом, интегрированная модель сложной системы в нотации UML (рис. 3.10) представляется в виде совокупности указанных выше диаграмм (см. рис. 3.9). Рис. 3.10. Интегрированная модель сложной системы в нотации UML 3.6. Особенности изображения диаграмм языка UMLБольшинство перечисленных выше диаграмм являются в своей основе графами специального вида, состоящими из вершин в форме геометрических фигур, которые связаны между собой ребрами или дугами. Поскольку информация, которую содержит в себе граф, имеет в основном топологический характер, ни геометрические размеры, ни расположение элементов диаграмм (за некоторыми исключениями, такими как диаграмма последовательностей с метрической осью времени) не имеют принципиального значения. Для диаграмм языка UML существуют три типа визуальных обозначений, которые важны с точки зрения заключенной в них информации:
Таким образом, в языке UML используется четыре основных вида графических конструкций:
При графическом изображении диаграмм следует придерживаться следующих основных рекомендаций:
Любая из моделей системы должна содержать только те элементы, которые определены в нотации языка UML. Имеется в виду требование начинать разработку проекта, используя только те конструкции, которые уже определены в метамодели UML. Как показывает практика, этих конструкций вполне достаточно для представления большинства типовых проектов программных систем. И только в случае отсутствия необходимых базовых элементов языка UML следует использовать механизмы их расширения для адекватного представления конкретной модели системы. При этом не допускается какое бы то ни было переопределение семантики тех элементов, которые отнесены к базовой нотации метамодели языка UML. Процесс построения отдельных типов диаграмм имеет свои особенности, которые тесно связаны с семантикой элементов этих диаграмм. Сам процесс ООАП в контексте языка UML получил специальное название – рациональный унифицированный процесс (Rational Unified Process, RUP). Концепция RUP и основные его элементы разработаны А. Джекобсоном в ходе его работы над языком UML [18]. Суть концепции RUP заключается в последовательной декомпозиции или разбиении процесса ООАП на отдельные этапы, на каждом из которых осуществляется разработка соответствующих типов канонических диаграмм модели системы. При этом на начальных этапах RUP строятся логические представления статической модели структуры системы, затем – логические представления модели поведения, и лишь после этого – физические представления модели системы. Как нетрудно заметить, в результате RUP должны быть построены канонические диаграммы на языке UML, при этом последовательность их разработки в основном совпадает с их последовательной нумерацией. Таким образом, порядок изложения канонических диаграмм в части II книги не является случайным, а определяется общими рекомендациями рационального унифицированного процесса. Примечания:Примечание 1 Принято считать, что сам термин алгоритм происходит от имени средневекового математика Аль-Хорезми, который в 825 г. описал правила выполнения арифметических действий в десятичной системе счисления. Примечание 2 Появление и интенсивное использование условных операторов и оператора безусловного перехода стало предметом острых дискуссий среди специалистов по программированию. Дело в том, что бесконтрольное применение в программе оператора безусловного перехода goto способно серьезно осложнить понимание кода. Соответствующие программы стали сравнивать со спагетти, называя их bowl of spaghetti, имея в виду многочисленные переходы от одного фрагмента программы к другому, или, что еще хуже, возврат от конечных операторов программы к ее начальным операторам. Ситуация казалась настолько драматичной, что в литературе зазвучали призывы исключить оператор goto из языков программирования. Именно с этого времени принято считать хорошим стилем программирования – программирование без goto. Примечание 3 Сейчас попытки оценить профессионализм программиста количеством строк программного кода могут вызвать лишь улыбку собеседника. Действительно, используя встроенные мастера современных инструментариев разработки (MS Visual C++ или Inprise/Borland Delphi), даже новичок может за считанные секунды последовательным нажатием кнопок диалоговых меню создать работоспособное приложение, содержащее сотни строк программного кода и состоящее из десятка отдельных файлов проекта. Примечание 19 Название «физическая модель» в терминологии ООАП и языка UML отличается от общепринятой трактовки этого термина в общей классификации моделей систем. В последнем случае под физической моделью системы понимают некоторую материальную конструкцию, обладающую свойствами подобия с формой оригинала. Примерами таких моделей могут служить модели технических систем (самолетов, кораблей), архитектурных сооружений (зданий, микрорайонов). Что касается использования этого термина в ООАП и языке UML, то здесь физическая модель отражает компонентный состав проектируемой системы с точки зрения ее реализации на некоторой технической базе и вычислительных платформах конкретных производителей. Примечание 20 Отмечая сложность описания языка UML, следует отметить присущую всем формальным языкам сложность их строгого задания, которая вытекает из необходимости в той или иной степени использовать естественный язык для спецификации базовых примитивов. В этом случае естественный язык выступает в роли метаязыка, т. е. языка для описания формального языка. Поскольку естественный язык не является формальным, то и его применение для описания формальных языков в той или иной степени страдает неточностью. Хотя в задачи языка UML не входит анализ соответствующих логико-лингвистических деталей, однако эти особенности отразились на структуре описания языка UML, в частности, делая стиль описания всех его основных понятий полуформальным. Примечание 21 Следует отметить, что семантика мета-метамодели не входит в описание языка UML. С одной стороны, это делает язык UML более простым для изучения, поскольку не требует знания общей теории формальных языков и формальной логики. С другой стороны, наличие мета-метамодели придает языку UML статус научности, который необходим ему для того, чтобы быть непротиворечивым формальным языком. Если эти особенности могут представляться мало интересными для многих программистов, то разработчики инструментальных средств никак не могут их игнорировать. Примечание 22 Говоря о пакетах в контексте общего описания языка, мы, по сути дела, приступаем к рассмотрению графической нотации языка UML. Дело в том, что для описания языка UML используются средства самого языка, и одним из таких средств является пакет. В общем случае пакет служит для группировки элементов модели. При этом сами элементы модели, которыми могут быть произвольные сущности, отнесенные к одному пакету, выступают в роли единого целого. Пакеты, так же как и другие элементы модели, могут быть вложены в другие пакеты. Важной особенностью языка UML является тот факт, что все виды элементов модели UML могут быть организованы в пакеты. Примечание 23 При рассмотрении отношения «пакет-подпакет» наиболее естественно ассоциировать его с более общим отношением «множество-подмножество», которое было рассмотрено в главе 2. Действительно, поскольку пакет можно рассматривать в качестве частного случая множества, такая интерпретация помогает нам использовать и графические средства для представления соответствующих отношений между пакетами. Примечание 24 Говоря об имени пакета, следует остановиться на общем соглашении об именах в языке UML. В данном случае именем пакета может быть строка (или несколько строк) текста, содержащее любое число букв, цифр и некоторых специальных знаков. С целью удобства спецификации пакетов принято в качестве их имен использовать одно или несколько существительных, например, контроллер, графический интерфейс, форма ввода данных. Примечание 25 Следует отметить присущую развитым языкам представления знаний в целом и языку UML в частности неоднозначность выразительных возможностей. Речь идет о том, что одна и та же моделируемая сущность или система может быть представлена средствами языка UML по-разному. При этом разные разработчики могут построить объектные модели одной и той же системы, существенно отличающиеся не только формой своего представления, но и составом используемых в модели компонентов. Примечание 26 Хотя этот пакет имел самостоятельное значение в начальных версиях языка UML, однако в проектах последней версии его элементы объединились с пакетом Элементы ядра. Причиной этого послужило требование строгого вхождения каждого элемента в один пакет. Примечание 27 Объединение в языке UML средств концептуализации исходных требований к проектируемой системе и структуризации ее внутренних компонентов с достаточно богатой семантикой применяемых для этого элементов имеет важное значение для построения адекватных моделей сложных систем. Действительно, ограниченность традиционных моделей состоит в том, что они не позволяют одновременно описывать статические или структурные свойства системы и динамику ее проведения. Попытки совместного решения данных проблем сталкиваются с отсутствием единой символики для обозначения близких по смыслу системных понятий. Язык UML удачно выделяет базовые понятия, которые необходимы при построении таких моделей. Более того, если этих понятий окажется недостаточно для разработки какого-то конкретного проекта, то сам разработчик может расширить базовые понятия и даже включить в модель собственные конструкции, согласованные с метамоделью языка UML Примечание 28 Таким образом, метамодель языка UML может рассматриваться как комбинация графической нотации (специальных обозначений), некоторого формального языка и естественного языка. При этом следует иметь в виду, что существует некоторый теоретический предел, который ограничивает описание метамодели средствами самой метамодели. Именно в подобных случаях испрльзуется естественный язык, обладающий наибольшими выразительными возможностями. Примечание 29 Приведенные дополнительные рекомендации не противоречат оригинальным правилам языка UML, а только уточняют рамки использования естественного языка при построении моделей и при описании самого языка. Поскольку описание семантики любого формального языка связано с проблемой его интерпре-~ тации, полностью обойтись без естественного языка не представляется возможным. Если вопросы использования оригинальных терминов при построении логических и физических моделей не вызывают сомнений у большинства программистов, то процесс построения концептуальных моделей сложных систем формализован в меньшей степени. Именно по этой причине исходные требования к системе формулируются на естественном для разработчиков языке (в нашем случае, на русском). В любом случае эти аспекты использования языков при построении моделей многогранны и могут служить темой отдельной работы. Примечание 30 В ранней литературе по UML в качестве отдельной диаграммы рассматривалась еще диаграмма объектов. Однако в версии 1.3 она не включена в перечень канонических диаграмм, поскольку ее элементы могут присутствовать на диаграммах других типов. Поэтому описание отдельных элементов диаграммы объектов рассматривается ниже, при изучении основных канонических типов диаграмм в части II данной книги. Примечание 31 Все диаграммы в языке UML изображаются с использованием фигур на плоскости. Однако некоторые из фигур (например, кубы) могут представлять собой двумерные проекции трехмерных геометрических тел, но и в этом случае они рисуются как фигуры на плоскости. Хотя в ближайшее время предполагают включить в язык UML пространственные диаграммы, в рассматриваемой версии языка такая возможность отсутствует. Примечание 32 Наличие в инструментальных CASE-средствах встроенной поддержки визуализации различных диаграмм языка UML позволяет в некоторой степени исключить ошибочное использование тех или иных графических символов, а также контролировать уникальность имен элементов диаграмм. Однако, поскольку вся ответсвенность за окончательный контроль непротиворечивости модели лежит на разработчике, необходимо помнить, что неформальный характер языка UML может служить источником потенциальных ошибок, которые в полном объеме вряд ли будут выявлены инструментальными средствами. Именно это обстоятельство требует от всех разработчиков глубокого знания нотации и семантики всех элементов языка UML. Примечание 33 Как не вспомнить в этой связи известный афоризм, получивший название «бритва Оккама». Суть изречения средневекового ученого-схоласта в достаточно вольном переводе сводится к следующему: «Не плоди рассуждений больше сущности». Другими словами, нужно стремиться дополнительно не усложнять и без того сложные модели систем, а по возможности упрощать их за счет унификации обозначений и семантики базовых элементов. Примечание 34 При дословном переводе термина RUP теряется некоторая дополнительная семантическая окраска, связанная с двусмысленным толкованием английского Rational. Речь идет о другом варианте перевода – унифицированный процесс от фирмы Rational Software, сотрудниками которой являются с некоторых пор его разработчики, включая упомянутого выше А. Джекобсона. |
|
||
Главная | В избранное | Наш E-MAIL | Добавить материал | Нашёл ошибку | Вверх |
||||
|